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Abstract
We consider continuous SL(2, R)-cocycles over a strictly ergodic homeomorphism
that fibers over an almost periodic dynamical system (generalized skew-shifts). We
prove that any cocycle that is not uniformly hyperbolic can be approximated by one that
is conjugate to an SO(2, R)-cocycle. Using this, we show that if a cocycle’s homotopy
class does not display a certain obstruction to uniform hyperbolicity, then it can be
C0-perturbed to become uniformly hyperbolic. For cocycles arising from Schrödinger
operators, the obstruction vanishes, and we conclude that uniform hyperbolicity is
dense, which implies that for a generic continuous potential, the spectrum of the
corresponding Schrödinger operator is a Cantor set.

1. Statement of the results
Throughout this article, we let X be a compact metric space. Furthermore, unless
specified otherwise, f : X → X is understood to be a strictly ergodic homeomor-
phism (i.e., f is minimal and uniquely ergodic) which fibers over an almost periodic
dynamical system. This means that there exists an infinite compact abelian group G

and an onto continuous map h : X → G such that h(f (x)) = h(x) + α for some
α ∈ G. Examples of particular interest include
• minimal translations of the d-torus Td for any d ≥ 1;
• the skew-shift (x, y) �→ (x + α, y + x) on T2, where α is irrational.

1.1. Results for SL(2, R)-cocycles
Given a continuous map A : X → SL(2, R), we consider the skew-product X ×
SL(2, R) → X × SL(2, R) given by (x, g) �→ (f (x), A(x) · g). This map is called
the cocycle (f, A). For n ∈ Z, An is defined by (f, A)n = (f n, An).
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We say that a cocycle (f, A) is uniformly hyperbolic∗ if there exist constants
c > 0, λ > 1 such that ‖An(x)‖ > cλn for every x ∈ X and n > 0.† This is
equivalent to the usual hyperbolic splitting condition (see [Y]). Recall that uniform
hyperbolicity is an open condition in C0(X, SL(2, R)).

We say that two cocycles (f, A) and (f, Ã) are conjugate if there exists a conju-
gacy B ∈ C0(X, SL(2, R)) such that Ã(x) = B(f (x))A(x)B(x)−1.

Our first result is the following.

THEOREM 1
Let f be as above. If A : X → SL(2, R) is a continuous map such that the cocycle
(f, A) is not uniformly hyperbolic, then there exists a continuous Ã : X → SL(2, R),
arbitrarily C0-close to A, such that the cocycle (f, Ã) is conjugate to an SO(2, R)-
valued cocycle.

Remark 1
A cocycle (f, A) is conjugate to a cocycle of rotations if and only if there exists C > 1
such that ‖An(x)‖ ≤ C for every x ∈ X and n ∈ Z (here, it is enough to assume that
f is minimal) (see [C], [EJ, Section 2], [Y, Proposition 1]).

Remark 2
In Theorem 1, one can drop the hypothesis of unique ergodicity of f (still asking
f to be minimal and to fiber over an almost periodic dynamics) as long as X is
finite-dimensional (see Remark 8).

Next, we focus on the opposite problem of approximating a cocycle by one that is
uniformly hyperbolic. As we will see, this problem is related to the important concept
of reducibility.

To define reducibility, we need a slight variation of the notion of conjugacy. Let
us say that two cocycles (f, A) and (f, Ã) are PSL(2, R)-conjugate if there exists
B ∈ C0(X, PSL(2, R)) such that Ã(x) = B(f (x))A(x)B(x)−1 (the equality being
considered in PSL(2, R)). We say that (f, A) is reducible if it is PSL(2, R)-conjugate
to a constant cocycle.

Remark 3
Reducibility does not imply, in general, that (f, A) is conjugate to a constant cocycle,
which would correspond to taking B ∈ C0(X, SL(2, R)). For example, let X = T1,
and let f (x) = x + α. Let H = diag(2, 1/2), and define A(x) = R−π(x+α)HRπx .∗∗

Notice that A is continuous, and notice that (f, A) is PSL(2, R)-conjugate but not

∗Some authors say that the cocycle has an exponential dichotomy.
†If A is a real (2 × 2)-matrix, then ‖A‖ = sup‖v‖�=0 ‖A(v)‖/‖v‖, where ‖v‖ is the Euclidean norm of v ∈ R

2.
∗∗Rθ indicates the rotation of angle θ .
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SL(2, R)-conjugate to a constant (for an example in which (f, A) is not uniformly
hyperbolic, see Remark 9).

Let us say that an SL(2, R)-cocycle (f, A) is reducible up to homotopy if there exists a
reducible cocycle (f, Ã) such that the maps A and Ã : X → SL(2, R) are homotopic.
Let Ruth be the set of all A such that (f, A) is reducible up to homotopy.

Remark 4
In the case where f is homotopic to the identity map, it is easy to see that Ruth
coincides with the set of maps A : X → SL(2, R) which are homotopic to a constant.

It is well known that there exists an obstruction to approximating a cocycle by a
uniformly hyperbolic one: a uniformly hyperbolic cocycle is always reducible up to
homotopy (see Lemma 4). Our next result shows that up to this obstruction, uniform
hyperbolicity is dense.

THEOREM 2
Uniform hyperbolicity is dense in Ruth.

This result is obtained as a consequence of a detailed investigation of the problem of
denseness of reducibility.

THEOREM 3
Reducibility is dense in Ruth. More precisely,
(a) if (f, A) is uniformly hyperbolic, then it can be approximated by a reducible

cocycle that is uniformly hyperbolic;
(b) if A ∈ Ruth, but (f, A) is not uniformly hyperbolic and A∗ ∈ SL(2, R)

is nonhyperbolic (i.e., | tr A∗| ≤ 2), then (f, A) lies in the closure of the
PSL(2, R)-conjugacy class of (f, A∗).

Proof of Theorem 2
The closure of the set of uniformly hyperbolic cocycles is obviously invariant un-
der PSL(2, R)-conjugacies and clearly contains all constant cocycles (f, A∗) with
tr A∗ = 2. The result follows from Theorem 3(b). �

Remark 5
It would be interesting to investigate also the closure of an arbitrary PSL(2, R)-
conjugacy class. Even the case of the PSL(2, R)-conjugacy class of a constant hyper-
bolic cocycle already escapes our methods.

Let us say a few words about the proofs of the results and their relation with the
literature. In the diffeomorphism and flow settings, Smale conjectured in the 1960s
that hyperbolic dynamical systems are dense. This turned out to be false in general.
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However, there are situations where denseness of hyperbolicity holds (see, e.g., the
recent work [KSV] in the context of one-dimensional dynamics).

Dinh Cong [D] proved that uniform hyperbolicity is (open and) dense in the space
of L∞(X, SL(2, R))-cocycles for any base dynamics f . So our Theorem 2 can be seen
as a continuous version of his result. Dinh Cong’s proof involves a tower argument to
perturb the cocycle and produce an invariant section for its action on the circle P1. We
develop a somewhat similar technique, replacing P1 with other spaces. Special care is
needed in order to ensure that perturbations and sections be continuous.

Another related result was obtained by Fabbri and Johnson, who considered
continuous-time systems over translation flows on Td and proved for a generic trans-
lation vector that uniform hyperbolicity occurs for an open and dense set of cocycles
(see [FJ, Theorem 1.2]).

1.2. Results for Schrödinger cocycles
We say that (f, A) is a Schrödinger cocycle when A takes its values in the set

S =
{(

t −1
1 0

)
, t ∈ R

}
⊂ SL(2, R). (1)

The matrices An arising in the iterates of a Schrödinger cocycle are the so-called
transfer matrices associated with a discrete one-dimensional Schrödinger operator.

More explicitly, given V ∈ C0(X, R) (called the potential ) and x ∈ X, we
consider the operator

(Hxψ)n = ψn+1 + ψn−1 + V (f nx)ψn (2)

in �2(Z). Notice that u solves the difference equation

un+1 + un−1 + V (f nx)un = Eun (3)

if and only if

(
un

un−1

)
= An

E,V

(
u0

u−1

)
, (4)

where (f, AE,V ) is the Schrödinger cocycle with

AE,V (x) =
(

E − V (x) −1
1 0

)
.

Properties of the spectrum and the spectral measures of the operator (2) can be studied
by looking at the solutions to (3) and hence, by virtue of (4), the one-parameter
family of Schrödinger cocycles (f, AE,V ). Using minimality of f , it follows quickly
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by strong operator convergence that the spectrum of Hx is independent of x ∈ X,
and we may therefore denote it by �. It is well known that � is a perfect set; as a
spectrum, it is closed and there are no isolated points by ergodicity of f and finite-
dimensionality of the solution space of (3) for fixed E. Johnson [J, Section 3] (see also
Lenz [L, Theorem 3]) showed that � consists of those energies E for which (f, AE,V )
is not uniformly hyperbolic:

R � � = {
E ∈ R; (f, AE,V ) is uniformly hyperbolic

}
. (5)

Our results have natural versions for Schrödinger cocycles, with the added sim-
plification that all such cocycles are homotopic to a constant. Simple repetition of
the proofs leads to difficulties in the construction of perturbations (since there are
fewer parameters to vary). We prove instead a general reduction result, which is of
independent interest. Recall definition (1) of the set S.

THEOREM 4
Let f : X → X be a minimal homeomorphism of a compact metric space. Let P be any
conjugacy-invariant property of SL(2, R)-valued cocycles over f . If A ∈ C0(X, S)
can be approximated by SL(2, R)-valued cocycles with property P , then A can be
approximated by S-valued cocycles with property P .

We are even able to treat the case of more regular cocycles.

THEOREM 5
Let 1 ≤ r ≤ ∞, and let 0 ≤ s ≤ r . Let X be a Cr compact manifold, and let
f : X → X be a minimal Cr -diffeomorphism. Let P be any property of SL(2, R)-
valued Cr -cocycles over f which is invariant by Cr -conjugacy. If A ∈ Cs(X, S) can
be Cs-approximated by SL(2, R)-valued cocycles with property P , then A can be
Cs-approximated by S-valued cocycles with property P .

Remark 6
Having in mind applications to other types of difference equations, it would be inter-
esting to investigate the validity of the results of Theorems 4 and 5 for more general
classes of sets.

It follows from Theorems 2 and 4 that uniformly hyperbolic Schrödinger cocycles are
C0-dense. This has the following corollary.

COROLLARY 6
For a generic V ∈ C0(X, R), we have that R � � is dense; that is, the associated
Schrödinger operators have Cantor spectrum.
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Proof
For E ∈ R, consider the set

UHE = {
V ∈ C0(X, R); (f, AE,V ) is uniformly hyperbolic

}
.

By Theorems 2 and 4, UHE is (open and) dense. Thus we may choose a countable
dense subset {En} of R and then use (5) to conclude that for V ∈ ⋂

n UHEn
, the set

R � � is dense. �

Let us discuss this result in the two particular cases of interest, translations and skew-
shifts on the torus.

If the base dynamics is given by a translation on the torus, that is, for quasi-
periodic Schrödinger operators, then Cantor spectrum is widely expected to occur
generically. Corollary 6 proves this statement in the C0-topology. There are other
related results that also establish a genericity statement of this kind. Dinh Cong and
Fabbri [DF] considered bounded measurable potentials V . Fabbri, Johnson, and Pavani
[FJP, Theorem 2.2] studied quasi-periodic Schrödinger operators in the continuum
case, that is, acting in L2(R); they proved for generic translation vector that Cantor
spectrum is C0-generic. More recently, generic Cantor spectrum for almost periodic
Schrödinger operators in the continuum was established by Gordon and Jitomirskaya
[GJ].

On the other hand, Corollary 6 is rather surprising in the case of the skew-
shift. Although few results are known, it is often assumed that in many respects the
skew-shift behaves similarly to a Bernoulli shift, and Schrödinger operators associ-
ated to Bernoulli shifts never have Cantor spectrum. More precisely, the following
is expected for Schrödinger operators defined by the skew-shift and a sufficiently
regular nonconstant potential function V : T2 → R (cf. [Bo3, page 114]). The (top)
Lyapunov exponent of (f, AE,V ) is strictly positive for almost every E ∈ R, the
operator H(x,y) has pure point spectrum with exponentially decaying eigenfunctions
for almost every (x, y) ∈ T2, and the spectrum � is not a Cantor set. Some partial
affirmative results concerning the first two statements can be found in [Bo1, Proposi-
tion 5], [Bo2, Theorem 2], [Bo3, Chapter 15], and [BGS, Proposition 2.11, Theorem
3.7], whereas Corollary 6 above shows that the third expected property fails generi-
cally in the C0-category.∗ It is natural to pose the question of whether our result is an
artifact of weak regularity: can the spectrum of a Schrödinger operator associated to
the skew-shift with analytic potential ever be a Cantor set?

The following result follows quickly from the results described above and the
standard Kolmogorov-Arnold-Moser (KAM) theorem.

∗A result of a similar flavor was recently obtained in [BD]; if α is not badly approximable, then the second
expected property also fails generically in the C0-category.
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THEOREM 7
Assume that f is a Diophantine translation of the d-torus. Then the set of V ∈
C0(X, R) for which the corresponding Schrödinger operators have some absolutely
continuous spectrum is dense.

This should be compared with [AD, Theorem 1], which showed that singular spectrum
is C0-generic in the more general context of ergodic Schrödinger operators.

2. Proof of the results for SL(2, R)-cocycles
Our goal is to prove Theorems 1 and 3.

LEMMA 1
There are two possibilities about the group G:
(a) (circle case) either there is an onto continuous homomorphism s : G → T1;
(b) (Cantor case) or G is a Cantor set.
In the second alternative, there exist continuous homomorphisms from G onto finite
cyclic groups of arbitrarily large order.

In view of the lack of an exact reference, a proof of Lemma 1 is given in Appendix A.
We first work out the arguments for the more difficult circle case. By assumption,

f fibers over a translation on G and hence also over a translation of the circle. That
translation is minimal because so is f . Therefore, in the circle case, we can and do
assume that G = T1.

The proofs then go as follows. In Section 2.1, we explain a construction of almost-
invariant sections for skew-products. This is used in Section 2.2 to prove Lemma 3,
which says that functions that are cohomologous to constant are dense in C0(X, R).
Using Lemma 3, the first case of Theorem 3 is easily proved in Section 2.3. In Section
2.4, we establish some lemmas about the action of SL(2, R) on hyperbolic space. The
proof of Theorem 1 is given in Section 2.5. It is similar to the proof of Lemma 3, with
additional ingredients including results on Lyapunov exponents from [B] and [F] and
the material from Section 2.4. To prove the second case of Theorem 3 in Section 2.6,
we employ Theorem 1 and Lemma 3 again.

In Section 2.7, we discuss the Cantor case, which is obtained by a simplification
of the arguments (because then no gluing considerations are needed).

2.1. Almost-invariant sections
From here until Section 2.6, we consider only the circle case.

A continuous skew-product over f is a continuous map F : X × Y → X × Y

(where Y is some topological space) of the form F (x, y) = (f (x), Fx(y)). F is called
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Figure 1. Castle with base Ii

invertible if it is a homeomorphism of X × Y . In this case, we write F n(x, y) =
(f n(x), F n

x (y)) for n ∈ Z. An invariant section for F is a continuous map x �→ y(x)
whose graph is F -invariant.

Let pi/qi be the ith continued fraction approximation of α. We recall that qiα is
closer to zero than any nα with 1 ≤ n < qi ; moreover, the points qiα alternate sides
around zero.

Let Ii ⊂ T1 be the shortest closed interval containing zero and qiα. Notice that the
first n > 0 for which Ii +nα intersects the interior of Ii ∪ Ii+1 is n = qi+1. Moreover,
(Ii + nα) � Ii coincides (modulo a point) with Ii+1. Also, notice that Ii+1 + qiα is
contained in Ii .

Let i be fixed. The above remarks show that the family of intervals

Ii, Ii + α, . . . , Ii + (qi+1 − 1)α, Ii+1, Ii+1 + α, . . . , Ii+1 + (qi − 1)α (6)

has these properties:
• the union of the intervals is the whole circle;
• the interiors of the intervals are two-by-two disjoint.
(Another way to obtain the family (6) is to cut the circle along the points nα with
0 ≤ n ≤ qi+1 + qi − 1.) We draw the intervals from (6) from bottom to top, as in
Figure 1. Then each point is mapped by the α-rotation to the point directly above it or
else to somewhere in the bottom floor Ii .
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The following lemma (and its proof ) is used in several situations (namely,
Sections 2.2, 2.5).

LEMMA 2
Let F : X × Y → X × Y be a continuous invertible skew-product over f . Fix any
i ∈ N, and let I = Ii . Given any map y0 : h−1(I ) → Y , there exists a unique map
y1 : X → Y which extends y0 and such that

F
(
x, y1(x)

) = (
f (x), y1(f (x))

)
for all x ∈ X � h−1(I ). (7)

If, in addition, y0 is continuous and satisfies

F n
(
x, y0(x)

) = (
f n(x), y0(f n(x))

)
for all x ∈ h−1(0), n ∈ {qi, qi+1 + qi}, (8)

then y1 is continuous.

Proof
For each x ∈ X, let

τ (x) = min
{
n ≥ 0, f n(x) ∈ h−1(I )

}
. (9)

Given y0 : h−1(I ) → Y , then y1 must be given by

y1(x) = (F τ (x)
x )−1

(
y0(f τ (x)(x))

)
. (10)

Now, assume that y0 is continuous, and assume that (8) holds. We need only check
that y is continuous at each point x where τ is not. Fix such an x, and let k = τ (x).
Then either (i) f k(x) ∈ h−1(0) or (ii) f k(x) ∈ h−1(qiα). Let � = τ (f k(x)); that is,
� = qi in case (i) and � = qi+1 in case (ii). Due to the definition of y0, we have
F �

f k(x)

(
y0(f k(x))

) = y0(f k+�(x)) in both cases. Therefore

(F k
x )−1

(
y0(f k(x))

) = (F k+�
x )−1

(
y0(f k+�(x))

)
.

The set of the possible limits of τ (xj ), where xj → x, is precisely {k, k+�}. It follows
that y is continuous at x. �

2.2. The cohomological equation
LEMMA 3
For every φ ∈ C0(X, R) and every δ > 0, there exists φ̃ ∈ C0(X, R) such that
‖φ − φ̃‖C0 < δ and φ̃ is C0-cohomologous to a constant; there exist w ∈ C0(X, R)
and a0 ∈ R such that

φ̃ = w ◦ f − w + a0.
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Remark 7
In the case where X = T1, there is a quick proof of Lemma 3: approximate φ by a (real)
trigonometric polynomial φ̃(z) = ∑

|n|≤m anz
n, and let w(z) = ∑

0<|n|≤m(e2πinα −
1)−1anz

n.

The following proof contains a construction that appears again in the (harder) proof
of Theorem 1, so it may also be useful as a warm-up.

Proof of Lemma 3
Fix φ ∈ C0(X, R), and fix δ > 0 small. Let a0 be the integral of φ with respect to
the unique f -invariant probability measure. Without loss of generality, assume that
a0 = 0. Write Sn = ∑n−1

j=0 φ ◦ f j . Let n0 be such that |Sn/n| < δ uniformly for every
n ≥ n0.

Choose and fix i such that

qi > max(n0, δ
−1‖φ‖C0 ).

Let I = Ii . The rest of the proof is divided into these three steps.

Step 1: Finding an almost-invariant section w1 : X → R. First, define a real function
w0 on h−1({0, qiα, (qi+1 + qi)α}) by

w0

(
f n(x)

) = Sn(x) for x ∈ h−1(0) and n = 0, qi , or qi+1 + qi .

Using Tietze’s extension theorem, we extend continuously w0 to h−1(I ) so that

sup
h−1(I )

|w0| = sup
h−1({0,qiα,(qi+1+qi )α})

|w0|.

Now, we consider the skew-product

F : X × R → X × R, F (x, w) = (
f (x), w + φ(x)

)
.

Applying Lemma 2 to F and w0, we find a continuous function w1 : X → R which
extends w0 and such that w1(f (x)) = w1(x) + φ(x) if x �∈ h−1(int I ).

Step 2: Definition of functions φ̃, w : X → R. Define φ̃ by φ̃ = φ outside of⊔qi+1−1
n=0 f n(h−1(I )), and

φ̃
(
f n(x)

)

= φ
(
f n(x)

) + w1(f qi+1 (x)) − w1(x) − Sqi+1 (x)

qi+1
if x ∈ h−1(I ), 0 ≤ n < qi+1.
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Define w by w = w1 outside of
⊔qi+1−1

n=1 f n(h−1(I )), and

w
(
f n(x)

) = w(x) +
n−1∑
j=0

φ̃
(
f j (x)

)
if x ∈ h−1(I ), 0 ≤ n < qi+1.

Then φ̃ and w are continuous functions satisfying φ̃ = w ◦ f − w.

Step 3: Distance estimate. Let x ∈ h−1(I ) be fixed. Due to the definition of w0, we
have

|w0(x)| ≤ (qi+1 + qi)δ.

Recalling (9), we see that τ (f qi+1 (x)) equals either 1 or qi + 1 (see Figure 1). In any
case, |Sτ (x)(x)| ≤ (qi + 1)δ, and therefore, by (10),

∣∣w1

(
f qi+1 (x)

)∣∣ ≤ ∣∣w0

(
f τ (x)+qi+1 (x)

)∣∣ + |Sτ (x)(x)| ≤ (qi+1 + 2qi + 1)δ.

Hence

∣∣w1(f qi+1 (x)) − w1(x)

qi+1

∣∣ ≤ (3qi+1 + 3qi + 1)δ

qi+1
< 7δ;

that is, the C0-distance between φ̃ and φ is less than 7δ. �

2.3. Denseness of reducibility in the uniformly hyperbolic case
First, let us note the following basic fact.

LEMMA 4
For any homeomorphism f : X → X, if (f, A) is uniformly hyperbolic, then A ∈
Ruth.

Proof
By uniform hyperbolicity, for each x ∈ X there exists a splitting R2 = Eu(x)⊕Es(x)
which depends continuously on x and is left invariant by the cocycle; that is, A(x) ·
Eu,s(x) = Eu,s(f (x)).

Let {e1, e2} be the canonical basis of R2. For each x ∈ X, let eu(x) ∈ Eu(x)
and es(x) ∈ Es(x) be unit vectors so that {eu(x), es(x)} is a positively oriented basis.
Define a matrix B(x) by putting B(x) · e1 = ceu(x) and B(x) · e2 = ces(x), where
c = [sin �(eu(x), es(x))]−1/2 is chosen so that det B(x) = 1. Then B(x) is uniquely
defined as an element of PSL(2, R) and depends continuously on x.
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Let D(x) be given by A(x) = B(f (x))D(x)B(x)−1. Then D(x) is a diagonal
“matrix.” Therefore D : X → PSL(2, R) is homotopic to a constant and A is
homotopic to a reducible cocycle. �

Proof of Theorem 3(a)
Let us write, for t ∈ R,

Dt = ±
(

et 0
0 e−t

)
∈ PSL(2, R).

By the proof of Lemma 4, there exist B ∈ C0(X, PSL(2, R)) and φ ∈ C0(X, R)
such that A(x) = B(f (x))Dφ(x)B(x)−1. By Lemma 3, we can perturb φ (and hence
A) in the C0-topology so that φ = w ◦ f − w + a0 for some w ∈ C0(X, R) and
a0 ∈ R. We can assume that a0 �= 0. Then B̂(x) = B(x)Dw(x) is a conjugacy between
A and the constant Da0 . �

2.4. Disk adjustment lemma
The aim here is to establish Lemma 6, which is used in the proof of Theorem 1. First,
we need to recall some facts about hyperbolic geometry.

The group SL(2, R) acts on the upper half-plane H = {w ∈ C, Im w > 0} as
follows:

A =
(

a b

c d

)
∈ SL(2, R) ⇒ A · w = aw + b

cw + d
.

(In fact, the action factors through PSL(2, R).) We endow the half-plane with the
Riemannian metric (of curvature −1)

v ∈ TwH ⇒ ‖v‖w = |v|
Im w

.

Then SL(2, R) acts on H by isometries.
We fix the following conformal equivalence between H and the unit disk D =

{z ∈ C; |z| < 1}:

w = −iz − i

z − 1
∈ H ←→ z = w − i

w + i
∈ D.

We take on the disk the Riemannian metric that makes the map above an isometry,
namely, ‖v‖z = 2(1 − |z|2)−2|v|. By conjugating, we get an action of SL(2, R) on D

by isometries, which we also denote as (A, z) �→ A · z.
Let d(·, ·) denote the distance function induced on D by the Riemannian metric.

We claim that

‖A‖ = ed(A·0,0)/2 for all A ∈ SL(2, R). (11)
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Proof of (11)
It is sufficient to prove the corresponding fact that ‖A‖ = ed(A·i,i)/2 on the half-plane

H. We first check the case where A is a diagonal matrix Hλ =
(

λ 0
0 λ−1

)
with λ > 1:

d(A · i, i) = d(λ2i, i) =
∫ λ2

1

dy

y
= 2 log λ = 2 log‖A‖.

Next, if A is a rotation Rθ , then its action on H fixes the point i, so the claim also
holds. Finally, a general matrix can be written as A = RβHλRα , so (11) follows. �

We now prove two lemmas.

LEMMA 5
There exists a continuous map � : D×D → SL(2, R) such that �(p1, p2) ·p1 = p2

and ‖�(p1, p2) − Id‖ ≤ ed(p1,p2)/2 − 1.

Let us recall a few more facts about the half-plane and the disk models which we use
in the proof of the lemma. An extended circle means either a Euclidean circle or a
Euclidean line in the complex plane.
• The geodesics on H (resp., D) are arcs of extended circles which orthogonally

meet the real axis ∂H (resp., the unit circle ∂D) at the endpoints (called points
at infinity).

• The points lying at a fixed positive distance from a geodesic γ form two arcs
of extended circles γ1 and γ2, which have the same points at infinity as γ ; see
Figure 2 (left). We say that γ and γ1 are equidistant curves.

• A quadrilateral p1q1q2p2 is called a Saccheri quadrilateral with base q1q2 and
summit p1p2 if the angles at vertices q1 and q2 are right and the sides p1q1

and p2q2 (called the legs) have the same length; see Figure 2 (right). The fact
is that the summit is necessarily longer than the base.

Proof
We define the matrix �(p1, p2) explicitly. It is the identity if p1 = p2. Next, consider
the case p1 �= p2.

We first consider a particular case where we rewrite the two points as q1, q2.
Assume that the (whole) geodesic γ containing q1 and q2 also contains zero; that is,
γ is a piece of Euclidean line. Let u be the point in the circle {|z| = 1} such that
the line contains −u, q1, q2, u, in that order. Consider the hyperbolic isometry that
preserves the geodesic γ , translating it and taking q1 to q2. That isometry corresponds
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Figure 2. Left: equidistant curves on H; right: a Saccheri quadrilateral p1q1q2p2 on D

Figure 3. Proof of Lemma 5

to a matrix of the form

A = RθHλR−θ , where Rθ =
(

cos θ − sin θ

sin θ cos θ

)
, Hλ =

(
λ 0
0 λ−1

)

for some θ ∈ R (in fact, e−2iθ = u) and λ > 1. Since the isometry translates γ , we have
d(0, A · 0) = d(q1, A · q1) = d(q1, q2). Therefore (11) gives λ = ‖A‖ = ed(q1,q2)/2.
On the other hand, ‖A − Id‖ = ‖Hλ − Id‖ = λ − 1, so we can define �(q1, q2) = A

and the bound claimed in the statement of the lemma becomes an equality.
Next, let us consider the general case. Given p1 and p2, consider the family of

extended circles that contain p1 and p2. There exists a unique C in this family which
intersects the circle {|z| = 1} in two antipodal points u and −u (see Figure 3). Let
γ̃ = C ∩ D, and let γ be the geodesic whose points at infinity are u and −u; so γ and
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γ̃ are equidistant curves. Notice that the case already treated corresponds to the case
where γ̃ = γ is a geodesic. Let q1 (resp., q2) be the point in γ which has the least
hyperbolic distance to p1 (resp., p2). Notice that �(q1, q2) is already defined. We set
�(p1, p2) = �(q1, q2).

Because γ and γ̃ are equidistant, we have d(p1, q1) = d(p2, q2). It follows that
p1q1q2p2 is a Saccheri quadrilateral. In particular, d(q1, q2) < d(p1, p2), and hence
‖�(p1, p2)‖ < ed(p1,p2)/2. Also, since �(q1, q2) translates the geodesic γ sending q1

to q2, it sends the leg q1p1 to the leg q2p2, and, in particular, sends p1 to p2, as desired.
This completes the definition of �; continuity is evident. �

LEMMA 6
For every n ≥ 1, there exists a continuous map �n : SL(2, R)n × D2 → SL(2, R)n

such that if �n(A1, . . . , An, p, q) = (Ã1, . . . , Ãn), then
(a) Ãn · · · Ã1 · p = q, and
(b) ‖ÃiA

−1
i − Id‖ ≤ exp

(
(1/(2n))d(An · · · A1 · p, q)

) − 1 for 1 ≤ i ≤ n.

Proof
Let w0 = An · · · A1 · p, and let L = d(w0, q). For 1 ≤ i ≤ n, let wi be the point
in the hyperbolic geodesic segment joining w0 and q which is at distance iL/n of
w0. Also, let zi = (An · · · An−i+1)−1 · wi for 0 ≤ i ≤ n. Then z0 = p, zn = q, and
d(Ai · zi−1, zi) = L/n. Let Ãi = �(Ai · zi−1, zi)Ai , where � is as in Lemma 5.

2.5. Proof of Theorem 1
Let A : X → SL(2, R) be such that (f, A) is not uniformly hyperbolic, and let δ0 > 0
be given. We want to find Ã ∈ C0(X, SL(2, R)) and a continuous function z : X → D

so that ‖Ã−A‖C0 < δ0 and Ã(x) ·z(x) = z(f (x)). Accomplishing this, we simply set
B(x) = �(z(x), 0) (where � is given by Lemma 5), and then B(f (x))A(x)B(x)−1

are rotations.
Because the cocycle is not uniformly hyperbolic, a theorem by Bochi [B, Theo-

rem C] gives a C0-perturbation of A whose upper Lyapunov exponent (with respect
to the unique invariant probability) is zero. For simplicity of writing, let A denote this
perturbation. Since f is uniquely ergodic, a result due to Furman [F, Theorem 1] gives
that (f, A) has uniform subexponential growth; that is,

lim
n→∞

1

n
log‖An(x)‖ = 0 uniformly on x ∈ X. (12)

Let δ > 0 be such that (e7δ − 1)‖A‖C0 < δ0. Let n0 be such that n ≥ n0 implies
that ‖An(x)‖ ≤ enδ for every x.

The rest of the argument is analogous to the corresponding steps in the proof of
Lemma 3, with the disk playing the role of the line. Let pi/qi be the ith continued
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fraction approximation of α. Choose and fix i large so that

qi > max(n0, δ
−1 log‖A‖C0 ).

Let I ⊂ T1 be the shortest closed interval containing zero and qiα. The rest of the
proof is divided into three steps.

Step 1: Finding an almost-invariant section z1 : X → R. First, we define z0 on
h−1({0, qiα, (qi+1 + qi)α}) by

z0

(
f n(x)

) = An(x) · 0 for x ∈ h−1(0) and n = 0, qi , or qi+1 + qi .

Then we extend continuously z0 to h−1(I ) in a way such that

sup
x∈h−1(I )

d
(
z0(x), 0

) = sup
x∈h−1({0,qiα,(qi+1+qi )α})

d
(
z0(x), 0

)
.

Consider the skew-product

F : X × D → X × D, F (x, z) = (
f (x), A(x) · z

)
.

Applying Lemma 2 to F and z0, we find a continuous map z1 : X → D which extends
z0 and such that z1(f (x)) = A(x) · z1(x) if x �∈ h−1(int I ).

Step 2: Definition of maps Ã : X → SL(2, R) and z : X → D. Let �qi+1 be given by
Lemma 6, and put

(
Ã(x), Ã(f (x)), . . . , Ã(f qi+1−1(x))

)
= �qi+1

(
A(x), A(f (x)), . . . , A(f qi+1−1(x)), z1(x), z1(f qi+1 (x))

)

for each x ∈ h−1(I ). This defines Ã on
⊔qi+1−1

n=0 f n(h−1(I )). Let Ã equal A on the rest
of X.

For each x ∈ h−1(I ) and 1 ≤ n ≤ qi+1 − 1, let z(f n(x)) = Ãn(x) · z1(x). This
defines z on

⊔qi+1−qi−1
n=1 f n(h−1(I )). Let z equal z1 on the rest of X.

It is easy to see that both maps Ã and z are continuous on the whole X and satisfy
Ã(x) · z(x) = z(f (x)).

Step 3: Distance estimate. To complete the proof, we need to check that Ã is C0-close
to A. Begin by noticing that, by (11),

B ∈ SL(2, R), w ∈ D ⇒ d(B · w, 0) ≤ d(w, 0) + 2 log‖B‖.
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Now, fix x ∈ h−1(I ). By the definition of z0, we have

d
(
z0(x), 0

) ≤ 2(qi+i + qi)δ.

If y = f qi+1 (x), then τ (y) equals 1 or qi + 1. In either case, ‖[Aτ (y)(y)]−1‖ =
‖Aτ (y)(y)‖ ≤ e(qi+1)δ . Since z1(y) = [Aτ (y)(y)]−1 · z0(f τ (y)(y)), we get

d
(
z1(y), 0

) ≤ d
(
z0(f τ (y)(y)), 0

) + 2 log‖Aτ (y)(y)‖ ≤ 2(qi+1 + 2qi + 1)δ.

Putting things together,

d
(
Aqi+1 (x) · z0(x), z1(f qi+1 (x))

) ≤ d
(
Aqi+1 (x) · z0(x), 0

) + d
(
0, z1(f qi+1 (x))

)
≤ d

(
z0(x), 0

)+2 log‖Aqi+1 (x)‖+d
(
0, z1(f qi+1 (x))

)
≤ 2(3qi+1 + 3qi + 1)δ.

By Lemma 6,

‖ÃA−1 − Id‖C0 ≤ exp
[ 1

2qi+1
d
(
Aqi+1 (x) · z0(x), z1(f qi+1 (x))

)] − 1 < e7δ − 1.

So ‖Ã − A‖C0 ≤ δ0, as desired. �

Remark 8
A result by Avila and Bochi [AB] says that a generic SL(2, R)-cocycle over a minimal
homeomorphism either is uniformly hyperbolic or has uniform subexponential growth
(12) (which is equivalent to the simultaneous vanishing of the Lyapunov exponent for
all f -invariant measures), provided that the space X is compact with finite dimension.
Using this in place of the aforementioned results from [B] and [F], we obtain the
generalization claimed in Remark 2; the rest of the proof is the same.

2.6. Completion of the proof of Theorem 3
We first prove two lemmas.

LEMMA 7
Assume that A : X → SL(2, R) is homotopic to a constant, and assume that (f, A)
is not uniformly hyperbolic. Then there exist Ã arbitrarily C0-close to A and B ∈
C0(X, SL(2, R)) such that B(f (x))Ã(x)B(x)−1 is a constant in SO(2, R).

Proof
By Theorem 1, we can perturb A so that there exist A1 ∈ C0(X, SO(2, R)) and
B1 ∈ C0(X, SL(2, R)) such that A(x) = B1(f (x))A1(x)B1(x)−1.
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Let r : SL(2, R) → SO(2, R) be a deformation retract. Let B2(x) = r(B1(x))
and A2(x) = B2(f (x))A1(x)B2(x)−1. Then A2(x) is
(i) SO(2, R)-valued,
(ii) conjugate to A(x),
(iii) homotopic to A(x) and therefore homotopic to a constant.
Due to the existence of the deformation retract r , A2 is also homotopic to a constant
as an X → SO(2, R) map. Consider the covering map R → SO(2, R) given by
θ �→ Rθ . Let φ : X → R be a lift of A2, that is, A2(x) = Rφ(x).

By Lemma 3, there exists φ̃ very close to φ such that φ̃ = w ◦ f − w + a0 for
some w ∈ C0(X, R) and a0 ∈ R. So the map Ã2 = Rφ̃(x) is close to A2 and conjugate
to the constant Ra0 .

Since A and A2 are conjugate, there exists Ã close to A and conjugate to Ã2 (and
therefore to the constant). Then Ã is the map we were looking for. �

LEMMA 8
If A ∈ Ruth, then (f, A) is PSL(2, R)-conjugate to a cocycle that is homotopic to a
constant.

Proof
Let π : SL(2, R) → PSL(2, R) be the quotient map. Since A ∈ Ruth, there exist
B : X → SL(2, R) homotopic to A, D : X → PSL(2, R), and C ∈ PSL(2, R) such
that π(B(x)) = D(f (x))CD(x)−1. The map x ∈ X �→ D(f (x))−1π(A(x))D(x) ∈
PSL(2, R) is homotopic to a constant; therefore, it can be lifted to a map Ã : X →
SL(2, R), which is itself homotopic to a constant. Thus D is a PSL(2, R)-conjugacy
between A and Ã. �

Proof of Theorem 3(b)
We have already treated Theorem 3(a), so we restrict ourselves here to Theorem 3(b).

Fix A and A∗ as in the statement of Theorem 3. By Lemma 8, (f, A) is PSL(2, R)-
conjugate to a cocycle that is homotopic to a constant. Since the closure of a PSL(2, R)-
conjugacy class is invariant under PSL(2, R)-conjugacies, it is enough to consider the
case where A is homotopic to a constant. We are going to show that in this case, (f, A)
lies in the closure of the SL(2, R)-conjugacy class of (f, A∗).

By Lemma 7, A can be perturbed to become conjugate to a constant C∗ = Rθ in
SO(2, R). We explain how to perturb C∗ (and hence A because the conjugacy between
C∗ and A is fixed) in order that (f, C∗) becomes conjugate to (f, A∗). There are two
cases, depending on A∗.

In the case where A∗ = Id or A∗ is elliptic (i.e., | tr A∗| < 2), there exist
B∗ ∈ SL(2, R) and β ∈ R such that A∗ = B−1

∗ RβB∗. Since α is irrational, we can
choose k ∈ Z such that 2πkα + θ is very close to β (modulo 2πZ). We still have the
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right to perturb θ , so we can assume that 2πkα + θ = β. Letting B(x) = B∗R2πkh(x),
we see that B(f (x))RθB(x)−1 is precisely A∗. So (f, Rθ ) is conjugate to (f, A∗), as
desired.

In the remaining case, A∗ is parabolic (i.e., tr A∗ = ±2) with A∗ �= ±Id. By
the previous case, we can assume that C∗ = ±Id to start. In fact, we can perturb
further and assume that C∗ is a parabolic matrix with C∗ �= ±Id. Then C∗ and A∗ are
automatically conjugate in the group SL(2, R), and the theorem is proved. �

Remark 9
Assuming that A is homotopic to some cocycle that is conjugate to a constant,
“PSL(2, R)-conjugacy class” can be replaced by “SL(2, R)-conjugacy class” in The-
orem 3(b). We give an example showing that the stronger conclusion does not hold
without additional hypotheses. Let f : T2 → T2 be given by (x, y) �→ (x+α, y+2x).
Let A(x, y) = R2πx . We claim that
(a) (f, A) is reducible;
(b) for any Ã close to A, (f, Ã) is not conjugate to a constant SL(2, R)-cocycle.
To prove (a), let D(x, y) = Rπy (which is well defined in PSL(2, R)), and notice that
D(f (x, y))D(x, y)−1 = A(x, y). To prove (b), we show that for any continuous B :
T2 → SL(2, R), the map C(x, y) = B(f (x, y))A(x, y)B(x, y)−1 is not homotopic
to a constant. Consider the homology groups H1(T2) = Z2 and H1(SL(2, R)) = Z

and the induced homomorphisms

f∗ : (m, n) �→ (m, 2m + n), A∗ : (m, n) �→ m, B∗ : (m, n) �→ km + �n.

We have∗ C∗ = B∗ ◦ f∗ + A∗ − B∗; therefore C∗ : (m, n) �→ (2� + 1)m cannot be
the zero homomorphism.

2.7. The case of Cantor groups
Now, assume the second case in Lemma 1. So there are integers qi → ∞ and
continuous homomorphisms hi : G → T1 such that the image of hi is the (cyclic)
subgroup of T1 of order qi . Notice that the level sets of hi are compact, open, and
cyclically permuted by f . They form a tower of height qi which replaces the more
complicated castle of Figure 1 in our arguments. Changing the definition of hi , we
can assume that hi(f (x)) = hi(x) + (1/qi) (mod 1).

There are only three proofs that need modification.

Proof of Lemma 3 in the Cantor case
Fix φ ∈ C0(X, R) with mean zero, and let δ > 0 small. Let n0 be such that n ≥ n0

⇒ |Sn/n| < δ uniformly, where Sn is the nth Birkhoff sum of f . Choose i such that

∗Recall that if G is a path-connected topological group and γ1, γ2, γ : [0, 1] → G are such that γ (t) = γ1(t)γ2(t),
then the 1-chains γ and γ1 + γ2 are homologous.
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qi > n0. Define φ̃ and w : X → R by

x ∈ h−1
i (0), 0 ≤ n < qi

⇒ φ̃
(
f n(x)

) = φ
(
f n(x)

) − Sqi
(x)

qi

, w
(
f n(x)

) = Sn(x) − nSqi
(x)

qi

.

Then φ̃ and w are continuous, φ̃ = w ◦ f − w, and |φ̃ − φ| < δ. �

Proof of Theorem 1 in the Cantor case
Assume that (f, A) is not uniformly hyperbolic. Given δ0 > 0, let δ > 0 be such
that (eδ − 1)‖A‖C0 < δ0. Perturbing A, we can assume that ‖An(x)‖ < enδ for every
n ≥ n0 = n0(δ). Fix qi > n0. Define Ã : X → SL(2, R) so that

(
Ã(x), Ã(f (x)), . . . , Ã(f qi−1(x))

)
= �qi

(
A(x), A(f (x)), . . . , A(f qi+1−1(x)), 0, 0

)
, ∀x ∈ h−1

i (0),

where �qi
is given by Lemma 6. Define z : X → D by z(f n(x)) = Ãn(x) · 0 for

x ∈ h−1
i (0) and 0 ≤ n < qi . Then Ã and z are continuous and satisfy Ã(x) · z(x) =

Ã(f (x)). Moreover, since d(Aqi (0), 0) < qiδ, we have ‖Ã − A‖ < (eδ − 1)‖A‖ <

δ0. �

Proof of Theorem 3(b) in the Cantor case
We need only show that the closure of the SO(2, R)-conjugacy class of a constant
SO(2, R)-valued cocycle contains all constant SO(2, R)-valued cocycles. Given a con-
stant cocycle Rθ , i ∈ N, and k ∈ Z, let B(x) = R2πkhi (x). Then B(f (x))RθB(x)−1 =
Rθ+2πk/qi

. So the claim follows. �

This completes the proofs of Theorems 1 and 3.

3. Proof of the results for Schrödinger cocycles
In this section, we prove Theorems 4, 5, and 7.

3.1. Projection lemma
The proof of Theorems 4 and 5 is based on the following projection lemma.

LEMMA 9
Let 0 ≤ r ≤ ∞. Let f : X → X be a minimal homeomorphism of a compact metric
space with at least three points (if r = 0) or a minimal Cr diffeomorphism of a Cr
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compact manifold. Let A ∈ Cr (X, S) be a map whose trace is not identically zero.
Then there exist a neighborhood W ⊂ C0(X, SL(2, R)) of A and continuous maps

� = �A : W → C0(X, S) and � = �A : W → C0
(
X, SL(2, R)

)

satisfying

� and � restrict to continuous maps W ∩ Cs → Cs for 0 ≤ s ≤ r, (13)

�(B)
(
f (x)

) · B(x) · [�(B)(x)]−1 = �(B)(x), (14)

�(A) = A and �(A) = id. (15)

Proof of Theorems 4 and 5
The result is easy if #X ≤ 2, so we assume that #X ≥ 3. In this case, Lemma 9
implies the result unless tr A is identically zero.

Assume that tr A is identically zero. Let V ⊂ X be an open set such that V ∩
f (V ) = ∅ and V ∩ f 2(V ) = ∅. Let Ã ∈ Cr (X, S) be Cr -close to A such that
tr Ã is supported in V ∪ f 2(V ) and, moreover, tr Ã(z) + tr Ã(f 2(z)) = 0 for z ∈ V .
Then (f, Ã) is Cr -conjugate to A; letting B(x) = id for x /∈ f (V ) ∪ f 2(V ), B(x) =
Ã(f −1(x))R−π/2 for x ∈ f (V ), and B(x) = R−π/2Ã(f −2(x)) for x ∈ f 2(V ), we
have B(f (x))A(x)B(x)−1 = Ã(x). If A can be Cs-approximated by SL(2, R)-valued
cocycles with property P , then so can Ã. Since tr Ã does not vanish identically, Ã can
be Cs-approximated by S-valued cocycles with property P . Since Ã can be chosen
arbitrarily Cr -close to A, we conclude that A can be Cs-approximated by S-valued
cocycles with property P . �

The proof of Lemma 9 has two distinct steps. First, we show that SL(2, R)-
perturbations can be conjugated to localized SL(2, R)-perturbations, and then we
show how to conjugate localized perturbations to Schrödinger perturbations.

In order to be precise, the following definition is useful. Given A ∈
Cr (X, SL(2, R)) and K ⊂ X compact, let Cr

A,K (X, SL(2, R)) ⊂ Cr (X, SL(2, R))
be the set of all B such that B(x) = A(x) for x /∈ K . The two steps that we described
correspond to Lemmas 10 and 11.

LEMMA 10
Let V ⊂ X be any nonempty open set, and let A ∈ Cr (X, SL(2, R)) be arbitrary.
Then there exist an open neighborhoodWA,V ⊂ C0(X, SL(2, R)) of A and continuous
maps

� = �A,V : WA,V → C0
A,V

(
X, SL(2, R)

)
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and

� = �A,V : WA,V → C0
(
X, SL(2, R)

)

satisfying (13), (14), and (15).

LEMMA 11
Let K ⊂ X be a compact set such that K ∩ f (K) = ∅ and K ∩ f 2(K) = ∅. Let
A ∈ Cr (X, S) be such that for every z ∈ K , we have tr A(z) �= 0. Then there exist an
open neighborhood WA,K ⊂ C0

A,K (X, SL(2, R)) of A and continuous maps

� = �A,K : WA,K → C0(X, S) and � = �A,K : WA,K → C0
(
X, SL(2, R)

)

satisfying (13), (14), and (15).

Before proving the two lemmas, let us show how they imply Lemma 9.

Proof of Lemma 9
Let z ∈ X be such that tr A(z) �= 0. Let V be an open neighborhood of z such that with
K = V , we have tr A(x) �= 0 for x ∈ K , K ∩ f (K) = ∅, and K ∩ f 2(K) = ∅. Let
�A,V : WA,V → C0

A,K (X, SL(2, R)) and �A,V : WA,V → C0(X, SL(2, R)) be given
by Lemma 10. Let �A,K : WA,K → C0(X, S) and �A,K : WA,K → C0(X, SL(2, R))
be given by Lemma 11. Let W be the domain of � = �A,K ◦ �A,V , and let � =
(�A,K ◦ �A,V ) · �A,V . The result follows. �

Proof of Lemma 10
For every x ∈ X, let y = yx ∈ V and n = nx ≥ 0 be such that f n(y) = x but
f −i(x) /∈ V for 0 ≤ i ≤ n−1. Let W = Wx ⊂ V be an open neighborhood of y such
that W ∩ f i(W ) = ∅ for 1 ≤ i ≤ n. Let K = Kx ⊂ W be a compact neighborhood
of y. Let U = Ux ⊂ f n(Kx) be an open neighborhood of x. Let φ = φx : W → [0, 1]
be a Cr -map such that φ(z) = 0 for z ∈ W � K , while φ(z) = 1 for z ∈ f −n(U ).

Define maps �x, �x : Wx → C0(X, SL(2, R)) on some open neighbor-
hood Wx of A as follows. Let � : GL+(2, R) → SL(2, R) be given by
�(M) = (det M)−1/2M . Let �x(B)(z) = B(z) for z /∈ ⋃n

i=0 f i(W ), let �x(B)(z) =
�

(
B(z) + φ(f −j (z))(A(z) − B(z))

)
for z ∈ f j (W ) and 1 ≤ j ≤ n, and let

�x(B)(z) = [
�x(B)

(
f (z)

)]−1 · · ·[�x(B)
(
f n(z)

)]−1·B(
f n(z)

) · · · B(z) for z ∈ W .

Let �x(B)(z) = id for x /∈ ⋃n

i=1 f i(W ), and let �x(B)(z) =
�x(B)(f −1(z)) · · ·�x(B)(f −j (z)) ·B(f −j (z))−1 · · · B(f −1(z))−1 for z ∈ f j (W ) and
1 ≤ j ≤ n. Then �x and �x are continuous and have the following properties:
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(a) for every z ∈ X, we have �x(B)(f (z)) · B(z) · [�x(B)(z)]−1 = �x(z);
(b) the set {z ∈ X � V ; �x(B)(z) = A(z)} contains {z ∈ X � V ; B(z) =

A(z)} ∪ (Ux � V );
(c) �x(A) = A and �x(A) = id.
Choose a finite sequence x1, . . . , xk such that X = ⋃k

i=1 Uxi
. Let WA,V ⊂

C0(X, SL(2, R)) be an open neighborhood of A such that �i = �xi
◦ · · · ◦ �x1

is well defined for 1 ≤ i ≤ k. Let �i = �xi
◦ �i−1 for 2 ≤ i ≤ k, and let �1 = �x1 .

The result follows with � = �k and � = �k · · · �1. �

Proof of Lemma 11
Let Z ⊂ S3 be the set of all (B1, B2, B3) such that tr B2 �= 0. One easily checks that
(B1, B2, B3) �→ B3B2B1 is an analytic diffeomorphism between Z and

L =
{(

a b

c d

)
∈ SL(2, R), d �= 0

}
.

Let η : L → Z be the inverse map.
Let �(B)(x) = A(x) if z /∈ ⋃1

i=−1 f i(K), and for z ∈ K , let

(
�(B)(f −1(z)), �(B)(z), �(B)(f (z))

) = η
(
B(f −1(z)), B(z), B(f (z))

)
.

Let �(B)(z) = id for z /∈ K ∪ f (K), let �(z) = �(B)(f −1(z)) · [B(f −1(z))]−1 for
z ∈ K , and let �(z) = �(B)(f −1(z)) ·�(B)(f −2(z)) · [B(f −2(z))]−1 · [B(f −1(z))]−1

for z ∈ f (K). All properties are easy to check. �

Remark 10
Let f : X → X be a homeomorphism of a compact metric space, and let N ≥ n ≥ 1.
Let us say that a compact set K is (n, N)-good if K ∩ f k(K) = ∅ for 1 ≤ k ≤ n− 1
and

⋃N−1
k=0 f k(K) = X. Then Lemma 9 holds under the weaker (than minimality of

f ) hypothesis that there exist N ≥ 3 and a (3, N)-good compact set K such that
tr A(x) �= 0 for every x ∈ K .

3.2. Dense absolutely continuous spectrum
To prove Theorem 7, we use the following standard result.

THEOREM 8
Let f be a Diophantine translation of the d-torus Td = Rd/Zd . Then there exists a
set � ⊂ R of full Lebesgue measure such that if V ∈ C∞(Td, R) and E0 ∈ R are
such that (f, AE0,V ) is C∞ PSL(2, R)-conjugate to (f, Rπθ ) for some θ ∈ �, then the
associated Schrödinger operator has some absolutely continuous spectrum.

For completeness, we discuss the reduction of this result to the standard KAM theorem
in more detail in Appendix B.
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Proof of Theorem 7
Let V ∈ C0(Td, R) be nonconstant, and let E be in the spectrum of the associated
Schrödinger operator. By Lemma 7, there exists Ã ∈ C0(Td, SL(2, R)) arbitrarily
close to AE,V such that (f, Ã) is conjugate to (f, R2πθ ) for some θ ∈ �. Ap-
proximating the conjugacy by a C∞-map, we may assume that Ã is C∞. Applying
Lemma 9 with r = ∞, we find a C∞-function Ṽ which is C0-close to V such that
(f, AE,Ṽ ) is conjugate to (f, A) and hence to (f, R2πθ ). The result now follows from
Theorem 8. �

Appendices

A. Topological groups

We quickly review some material that can be found in [R]. Let G be a topological
group. If G is locally compact and abelian, one defines the dual group � = Ĝ; it
consists of all characters of G (i.e., continuous homomorphisms γ : G → T1). Then
� is an abelian group, and with the suitable topology, it is also locally compact.
Some important facts are: (1) G is compact if and only if � is discrete; (2) �̂ = G

(Pontryagin duality).∗

Proof of Lemma 1
Since G is compact and infinite, the dual group � is discrete and infinite.

First, assume that � contains an element of infinite order; thus we can assume
that Z is a closed subgroup of �. Let ι : Z → � be the inclusion homomorphism, and
let s : �̂ → Ẑ be its dual.† Then s is onto: every character on Z can be extended to
a character on � (see [R, Section 2.1.4]). Since �̂ = G and Ẑ = T1, alternative (a)
holds.

Now, assume that all elements of � are of finite order; then G is a Cantor set (see
[R, Section 2.5.6]). There is a translation x �→ x + α of G which is a factor of the
minimal homeomorphism f , and so it is itself minimal. Therefore � is a subgroup of
T1

d , the circle group with the discrete topology (see [R, Section 2.3.3]). So there exist
cyclic subgroups �i ⊂ � with |�i | → ∞. Let Hi ⊂ G be the annihilator (see [R,
Section 2.1]) of �i . Then G/Hi = �i , and the quotient homomorphism G → G/Hi

is continuous. So we are in case (b). �

∗Here, “=” means isomorphic and homeomorphic.
†The dual of a continuous homomorphism h : G1 → G2 is the continuous homomorphism ĥ : Ĝ2 → Ĝ1 defined
by 〈x1, ĥ(γ2)〉 = 〈h(x1), γ2〉, where x1 ∈ G1, γ2 ∈ Ĝ2.
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B. Absolutely continuous spectrum via KAM

In this section, f : Td → Td is a minimal translation of the torus Td = Rd/Zd . We
show how Theorem 8 reduces to a result of [H], based on the usual KAM theorem.
We use the following criterion for absolutely continuous spectrum (see, e.g., [S, proof
of Theorem 1] for a simple proof ).

LEMMA 12
Let f : Td → Td be a homeomorphism, and let V ∈ C0(Td, R). If �b = {E ∈
R, (f, AE,V ) is conjugate to a cocycle of rotations} has positive Lebesgue measure,
then the associated Schrödinger operators have some absolutely continuous spectrum.

Recall that if A : Td → SL(2, R) is homotopic to a constant, one can define a fibered
rotation number ρ(f, A) ∈ R/Z (see [H, Section 5]). The following properties of the
fibered rotation number are easy to check.
(a) If A is a constant rotation of angle πθ , then ρ(f, A) = θ .
(b) If B is a PSL(2, R)-conjugacy between (f, A) and (f, A′), then ρ(f, A) =

ρ(f, A′) + kα, where k = k(B) ∈ Z only depends on the homotopy class
of B.

(c) The fibered rotation number ρ(f, A) is a continuous function of A ∈
C0(Td, SL(2, R)).

(d) If A ∈ C0(Td, SL(2, R)) is PSL(2, R)-conjugate to a constant rotation, then
the fibered rotation number (as a function of C0(Td, SL(2, R))) is K-Lipschitz
at A for some K > 0.∗

In [H], it is shown how the KAM theorem implies reducibility for cocycles close to
constant, under a Diophantine assumption on f and on the fibered rotation number.
To state it precisely, it is convenient to introduce some notation.

Let n ≥ 1, and let κ, τ > 0. Let DCn,κ,τ be the set of all α ∈ Rn such that there
exists κ, τ > 0 such that for every k0 ∈ Z, k ∈ Zn � {0}, we have

∣∣k0 +∑n

i=1 kiαi

∣∣ >

κ
( ∑n

i=1 |ki |
)−τ

. Notice that DCn,κ,τ is Zd -invariant. Let DCn = ⋃
κ,τ>0 DCn,κ,τ . We

say that f is a Diophantine translation if f (x) = x + αf for some αf ∈ DCd .
For every α ∈ Rd , let �α,κ,τ be the set of all θ ∈ R such that (α, θ) ∈ DCd+1,κ,τ .

Notice that �α,κ,τ is Z-invariant. Let �α = ⋃
κ,τ>0 �α,κ,τ . Then �α = ∅ if α /∈ DCd ,

and �α has full Lebesgue measure if α ∈ DCd . Moreover, every θ ∈ �α is a Lebesgue
density point of �α,κ,τ for some κ, τ > 0.

∗Let φ : Y → Z be a function between metric spaces, and let K > 0. We say that φ is K-Lipschitz at y ∈ Y if
there exists a neighborhood V ⊂ Y of y such that for every z ∈ V , we have dZ(φ(z), φ(y)) ≤ KdY (z, y).
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THEOREM 9 ([H, corollaire 3, remarque 1])
For every θ ∈ R and κ, τ > 0, there exists a neighborhood W ⊂ C∞(Td, SL(2, R))
of Rθ such that if A ∈ W and ρ(f, A) ∈ �αf ,κ,τ /Z, then (f, A) is C∞-conjugate to
a constant rotation.

Proof of Theorem 8
Let � = �αf

. Since αf ∈ DCd , � has full Lebesgue measure. Let V , E0, and θ be
as in the statement of the theorem. Let κ, τ > 0 be such that θ is a Lebesgue density
point of �αf ,κ,τ .

Let �r be the set of all E ∈ R such that (f, AE,V ) is C∞-conjugate to a constant
rotation.

Let k ∈ Z be such that ρ(f, AE0,V ) = θ + kα. By Theorem 9, there exists an
open interval I containing E0 such that if E′ ∈ I and ρ(f, AE′,V ) − kα ∈ �αf ,κ,τ ,
then E′ ∈ �r . Let ρ : I → R/Z be given by ρ(E) = ρ(f, AE,V )−kα. If ρ(I ) = {θ}
(this cannot really happen, but we do not need this fact), then I ⊂ �r . Otherwise, by
continuity of the fibered rotation number, ρ(I ∩ �r ) ⊃ ρ(I ) ∩ �α,κ,τ /Z has positive
Lebesgue measure. Since ρ is K(E)-Lipschitz at every E ∈ �r , we conclude in any
case that �r has positive Lebesgue measure. The result follows by Lemma 12. �
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