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NONUNIFORM HYPERBOLICITY, GLOBAL DOMINATED

SPLITTINGS AND GENERIC PROPERTIES OF

VOLUME-PRESERVING DIFFEOMORPHISMS

ARTUR AVILA AND JAIRO BOCHI

Abstract. We study generic volume-preserving diffeomorphisms on compact
manifolds. We show that the following property holds generically in the C1

topology: Either there is at least one zero Lyapunov exponent at almost ev-
ery point or the set of points with only nonzero exponents forms an ergodic
component. Moreover, if this nonuniformly hyperbolic component has positive
measure, then it is essentially dense in the manifold (that is, it has a positive
measure intersection with any nonempty open set) and there is a global domi-
nated splitting. For the proof we establish some new properties of independent
interest that hold Cr-generically for any r ≥ 1; namely, the continuity of the
ergodic decomposition, the persistence of invariant sets, and the L1-continuity
of Lyapunov exponents.

1. Introduction

Hyperbolicity is a fundamental concept in differentiable dynamical systems. Its
strongest form is uniform hyperbolicity: it requires that the tangent bundle splits
into uniformly contracting and expanding subbundles. Such dynamics are evidently
“chaotic”, that is, sensitive to the initial conditions. Moreover, these properties are
robust under perturbations. Uniform hyperbolicity was studied by Smale, Anosov,
Sinai and by many others who obtained a profusion of consequences.

Concurrent with the development of the uniformly hyperbolic theory, it became
clear that it leaves out many chaotic dynamical systems of interest. This motivated
the introduction of more flexible forms of hyperbolicity.

In the presence of an invariant probability measure, Oseledets theorem guaran-
tees the existence of Lyapunov exponents at almost every point. These numbers
measure the asymptotic growth of tangent vectors under the dynamics. Nonuni-
form hyperbolicity only requires that they are nonzero. As it was shown by Pesin
and Katok, this condition allows for the development of a rich theory (invariant
manifolds, periodic points, etc.). This theory has a strong measure-theoretic flavor:
the Lyapunov exponents, the Oseledets subbundles and the invariant manifolds are
only defined almost everywhere, and they vary only measurably with the point.

Other relaxed versions of the notion of uniform hyperbolicity, initially developed
having in mind the understanding of robust dynamical properties, were partial hy-
perbolicity and projective hyperbolicity (dominated splittings). While these keep
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some uniform requirements as the existence of continuous subbundles, neutral di-
rections are also allowed. Those concepts later played an important role in the
development of the theory of C1-generic dynamics.

Much more information about these developments can be found in the books
[BP] and [BDV]. For an extensive current panorama of C1-generic dynamics, see
[C].

In this paper we deal with conservative (i.e. preserving a smooth volume form)
diffeomorphisms, more precisely with C1-generic ones. One of our goals is to show
that the presence of some nonuniform hyperbolicity implies the existence of a global
dominated splitting. It has been previously understood in [BV] that the presence
of nonzero Lyapunov exponents implies the existence of “local” dominated split-
tings. On the other hand, global dominated splittings not only provide considerable
restrictions on the dynamics (for instance, the topology of the ambient space is con-
strained), but it is a basic starting point towards proving ergodicity.

All known arguments ensuring frequent ergodicity require at least a dominated
splitting; see for example [PS], [T], [ABW], [RRTU]. In fact, stably ergodic diffeo-
morphisms necessarily have a global dominated splitting [AM] (see also [BFP]).

In the C1-generic situation, despite being unable to obtain full ergodicity, we
show that the nonuniformly hyperbolic part of the space forms an ergodic compo-
nent.

The result of [BV] is based on ideas of Mañé [M2], who suggested that for
generic diffeomorphisms the measurable and asymptotic information provided by
the Oseledets theorem could be improved to continuous and uniform. In a similar
spirit, we study how regularly certain measurable objects (invariant sets, the er-
godic decomposition, and Lyapunov exponents) vary with respect to the dynamics,
obtaining improved properties in the generic case. Later we combine this informa-
tion with an arsenal of C1 tools and some Pesin theory (especially the recent work
[RRTU]) to address the existence of global dominated splittings and ergodicity of
the nonuniformly hyperbolic set. Since (most of) Pesin theory requires more than
C1 differentiability, our arguments use the smoothing result of [Av].

We now proceed to a formal statement of our main results.

1.1. A generic dichotomy. Let M be a smooth compact connected manifold of
dimension at least 2, and let m be a smooth volume measure that we also call
Lebesgue. Let Diffr

m(M) be the set of m-preserving Cr-diffeomorphisms endowed
with the Cr topology.

Let f ∈ Diff1
m(M). By Oseledets theorem, for m-almost every point x ∈ M

there is a splitting TxM = E1(x)⊕· · ·⊕E�(x)(x), and there are numbers λ̂1(f, x) >

· · · > λ̂�(x)(f, x), called the Lyapunov exponents, such that

lim
n→±∞

1

n
log

∥∥Dfn(x) · v
∥∥ = λ̂i(f, x) for every v ∈ Ei(x)� {0}.

Repeating each Lyapunov exponent λ̂i(f, x) according to its multiplicity dimEi(x),
we obtain a list λ1(f, x) ≥ λ2(f, x) ≥ · · · ≥ λd(f, x). Since volume is preserved,∑d

j=1 λj(f, x) = 0.

A point x (or its orbit) is called nonuniformly hyperbolic if all its Lyapunov
exponents are nonzero. The set of those points is denoted by Nuh(f).
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Theorem A. There is a residual set R ⊂ Diff1
m(M) such that for every f ∈ R,

either m(Nuh(f)) = 0 or the restriction f |Nuh(f) is ergodic and the orbit of almost
every point in Nuh(f) is dense in the manifold.

Let us now explain how Theorem A can be used to construct global dominated
splittings.

It was shown by Bochi and Viana [BV] that for a generic f in Diff1
m(M), the

Oseledets splitting along m-almost every orbit is either trivial or dominated. This
means that for almost every x ∈ M ,

a) either �(x) = 1, that is, all Lyapunov exponents are zero;
b) or �(x) > 1 and there exists n ≥ 1 such that

‖Dfm(fkx) · vi‖
‖Dfm(fkx) · vj‖

> 2

for every k ∈ Z, unit vectors vi ∈ Ei(fkx), vj ∈ Ej(fkx) with i < j, and
m ≥ n.

In particular, the manifold M equals Z � Λ mod 0, where Z is the set where all
Lyapunov exponents are zero and Λ is an increasing union of Borel sets Λn where the
Oseledets splitting is nontrivial and dominated with uniform n. Since dominated
splittings are always uniformly continuous (see e.g. [BDV]), there is a (uniform,
nontrivial) dominated splitting over the closure of each Λn, though not necessarily
over the closure of Λ.

Thus, as a direct consequence of [BV] and Theorem A, we get:

Corollary 1.1. There is a residual set R ⊂ Diff1
m(M) such that for every f ∈ R,

either m(Nuh(f)) = 0 or there is a global dominated splitting.

Sometimes there are topological obstructions to the existence of global dominated
splittings. For example, since the tangent bundle of even dimensional spheres ad-
mits no nontrivial invariant subbundle,1 the corollary implies that for the generic
f ∈ Diff1

m(S2k), there is at least one zero Lyapunov exponent at almost every point.
(For k = 1 this follows from the Mañé–Bochi Theorem [B1].)

Let us remark that in the symplectic case a stronger statement holds: C1-generic
symplectomorphisms are either ergodic and Anosov or have at least two zero Lya-
punov exponents at almost every point; see [B2].

1.2. More new generic properties. As mentioned before, the proof of Theorem
A depends on some new results about the regularity of the dependence of certain
measurable objects with respect to the dynamics.

The most basic and abstract of such results (Theorem B) shows that a generic
f in Diffr

m(M) is a continuity point of the ergodic decomposition of Lebesgue mea-
sure. More precisely, if f is generic, then for every Cr-nearby map g, the ergodic
decompositions of m with respect to f and g are close.

1Suppose the sphere S2k has a nontrivial field E of k-planes, with 0 < n < 2k. Using that
S2k is simply connected, we can continuously orient the planes. Thus the Euler class e(E) is
well-defined in Hn(S2k;Z) = {0}. Let F be the field of (2k− n)-planes orthogonal to E, oriented
so that TS2k = E ⊕ F . Then 2 = e(TS2k) = e(E) � e(F ) = 0 � 0 = 0, a contradiction. We
thank Daniel Ruberman for explaining this to us.
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This result will be used to show, for Cr-generic f :

• the existence of appropriate continuations of invariant sets (Theorem C),
• the L1-continuity of certain dynamically defined functions, in particular the
Lyapunov exponents (Theorem D).

These theorems work for any r ≥ 1 (and, in a certain sense, also for r = 0), and
even for other measures (see Remark 3.8), and we believe they have independent
interest.

1.3. Main ideas of the Proof of Theorem A. Let us explain the proof of the
main result in a brief and simplified way.

Let f be a C1-generic volume-preserving diffeomorphism. Assume that Nuhi(f)
= {λi > 0 > λi+1} has positive measure for some i. By [BV], we can take a Borel
subset Λ ⊂ Nuhi(f) with m (Nuhi(f)� Λ) � 1, where the splitting that separates
positive from negative Lyapunov exponents is (uniformly) dominated.

Despite f being only C1, domination allows us to find Pesin manifolds for the
points on Λ. More precisely, there are certain noninvariant sets Bl(f, �), that we
call Pesin blocks, such that if x ∈ Bl(f, �), then the Pesin manifolds W s(x) and
Wu(x) have “size” at least r(�); moreover, m (Λ� Bl(f, �)) → 0 and r(�) → 0 as
� → ∞. The Pesin blocks are explicitly defined in terms of certain Birkhoff sums,
so it will later be possible to control how they vary with the diffeomorphism.

We fix � large and 0 < r � r(�). We then find a hyperbolic periodic point p
such that the ball B(p, r) has a positive measure intersection with the Pesin block
Bl(f, �) and p itself is also in Bl(f, �). In order to find such p we use an improved
version of the Ergodic Closing Lemma due to [ABC].2

We consider the Pesin heteroclinic class of p, a concept introduced in the paper
[RRTU]. It is the set Phc(p, f) of the points x ∈ M whose Pesin manifolds Wu(x)
and W s(x) intersect, respectively W s(O(p)) and Wu(O(p)), in a transverse way.
In our situation, the class Phc(p, f) has positive measure, because Pesin manifolds
are much longer than r for points in the block.

Using the new generic properties (Theorems C and D) it is possible to show
that the situation is robust : For any g sufficiently close to f , the new Pesin block
Bl(g, �) is close to the old one, the continuation pg of the periodic point p belongs
to Bl(g, �), and the ball B(pg, r) has a positive measure intersection with Bl(g, �).
In particular, the new Pesin heteroclinic class Phc(pg, g) has positive measure.

Using [Av], we choose a C2 volume-preserving diffeomorphism g close to f . This
permits us to apply the ergodicity criterion from [RRTU] and conclude that g
restricted to Phc(pg, g) is ergodic.

We get an ergodic component for the the original map f using that its ergodic
decomposition varies continuously (Theorem B). We are able to show that this
component is in fact Nuhi(f). To show that this set has a positive measure in-
tersection with every nonempty open set in the manifold, we use the C1-generic
property that stable manifolds of periodic points are dense. Another C1-generic
property says that every pair of periodic points is homoclinically connected, and
using this we can show the index i is unique.

2There are other results that provide periodic points in similar situations, as for example
Katok’s Closing Lemma and Gan’s Lemma [Ga]. We don’t use those results; since we are working
with generic diffeomorphisms, the Ergodic Closing Lemma is sufficient.
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1.4. Questions. We still don’t understand very well the ergodic properties of C1-
generic volume-preserving diffeomorphisms. Even in dimension 2 the picture is
incomplete: By [B1], the generic diffeomorphism is either Anosov or has zero Lya-
punov exponents almost everywhere; but we don’t know much about the dynamics
in the second alternative – are those maps3 ergodic, for example?

Perhaps we may separate the more familiar nonuniformly hyperbolic world from
the unexplored world of all zero exponents. Optimistically, we conjecture that
generically zero exponents cannot appear along with nonzero exponents in a positive
measure set. In view of our results, this question can be posed as follows:

Conjecture. For generic f ∈ Diff1
m(M), either f has all exponents zero at Lebesgue

almost every point or f is ergodic and nonuniformly Anosov,4 that is, nonuniformly
hyperbolic with a global dominated splitting separating the positive exponents from
the negative ones.

M. A. Rodriguez-Hertz has announced a proof of this conjecture in dimension 3
which uses the results of this paper.

Notice that the conjecture is false in the symplectic case: There are nonempty
open sets U of partially hyperbolic symplectomorphisms that are not Anosov, and it
is shown in [B2] that for generic maps in U the Lyapunov exponents along the center
direction vanish. Even so, it is possible to show that generic partially hyperbolic
diffeomorphisms are ergodic; see [ABW].

1.5. Organization of the paper. The remainder of this paper is organized as
follows: In Section 2 we collect a few measure-theoretic facts to be used throughout
the paper. In Section 3 we state precisely and prove Theorems B, C, D. Section 4
contains more preliminaries:

• In §4.1, we recall several results of the “C1-generic theory” of conservative
diffeomorphisms, especially some from [BC] and [ABC].

• In §4.2, we explain the “C1-dominated Pesin theory” and give a useful tech-
nical tool (Lemma 4.8) to estimate the size of Pesin blocks. This part does
not use preservation of volume.

• In §4.3, we recall the ergodicity criterion from [RRTU].

Then in Section 5 we give the proof of Theorem A. As explained in §1.3, the
regularity results of Section 3 are used repeatedly, basically to allow us to tie the
C1 and C2 worlds through continuity.

2. Measure-theoretic preliminaries

2.1. The space of probability measures. If X is any compact Hausdorff space,
we let M(X) be the set of Borel probability measures on X, endowed with the usual
weak-star topology. This is a Hausdorff compact space itself and it is metrizable if
X is. In particular, we may consider the space M(M(X)), whose elements will be
denoted by bold greek letters.

A fact that we will use several times is that if a sequence μn → μ in M(X),
then μ(Y ) ≤ lim inf μn(Y ) if Y is open, μ(Y ) ≥ lim supμn(Y ) if Y is closed, and
μ(Y ) = limμn(Y ) if Y is a Borel set with μ(∂Y ) = 0.

3By [BC], there are points with dense orbits, but we don’t know if they form a positive measure
set.

4This term was coined by Martin Andersson.
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2.2. Measure-valued integration.

Proposition/Definition. Let (Y,Y , λ) be a probability space and (Z,Z) be a mea-
surable space. Let μy be probability measures on (Z,Z), defined for λ-almost every
y ∈ Y . Suppose that

(2.1) for each B ∈ Z, the function y ∈ Y �→ μy(B) ∈ R is Y-measurable.

Then there is a unique probability measure μ̄ on (Z,Z) such that for any bounded
Z-measurable function ϕ : Z → R, we have5

(2.2)

∫
Y

∫
Z

ϕ(z) dμy(z) dλ(y) =

∫
Z

ϕ(z) dμ̄(z).

We call μ̄ the integral of the function y → μy, and we denoted

μ̄ =

∫
μy dλ(y) .

Proof. By the “skew” Fubini theorem from [J], there is a measure ρ on (Y ×Z,Y×Z)
such that ∫

Y

∫
Z

ψ(y, z) dμy(z) dλ(y) =

∫
Y×Z

ψ(y, z) dρ(y, z)

for any bounded Y × Z-measurable function ψ.6 We define μ̄ as the push-forward
of ρ by the projection Y × Z → Z. �

Let us observe a few properties of the integral for later use:

• The integral behaves well under push-forwards. More precisely, if W is
another measurable space and F : Z → W is a measurable map, then
F∗μ̄ =

∫
F∗μy dμ(y).

• Formula (2.2) also holds for μ̄-integrable functions ϕ. More precisely, if
ϕ ∈ L1(μ̄) (so ϕ is an equivalence class of functions), then y �→

∫
ϕdμy is a

well-defined element of L1(λ) whose integral is given by (2.2). This follows
easily from the Monotone Convergence Theorem.

Another observation is that an integral can be approximated by finite convex
combinations:

Lemma 2.1. In the situation above, assume in addition that Z is a compact
Hausdorff space and Z is the Borel σ-algebra. Then for any neighborhood N of
μ̄ =

∫
μy dλ(y) in M(Z), there exist y1, . . . , yk ∈ Y and positive numbers c1, . . . ,

ck with
∑

ci = 1 such that the measure
∑

ciμyi
belongs to N .

Proof. We can assume that the neighborhood of μ̄ is of the form

N =

{
ν ∈ M(Z);

∣∣∣∣
∫

ϕj dν −
∫

ϕj dμ̄

∣∣∣∣ < ε ∀j = 1, . . . , n

}
,

for some ε > 0 and continuous functions ϕ1, . . . , ϕn. Define Φj : Y → R by Φj(y) =∫
ϕj dμy. Since those functions are bounded and measurable, we can approximate

them by simple functions. Take a measurable partition Y = E1 � · · · � Ek and
numbers aij ≤ bij (where 1 ≤ i ≤ k, 1 ≤ j ≤ n) such that for each j,∑

i

aij�Ei
≤ Φj ≤

∑
i

bij�Ei
and

∑
i

(bij − aij)λ(Ei) < ε.

5It is part of the statement that the integrand y �→
∫
ϕdμy is measurable.

6Observe that a converse to this result is related to the Rokhlin Desintegration Theorem [BDV,
§C.6].
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Define ci = λ(Ei) and choose points yi ∈ Ei. Since
∫
Φj dλ =

∫
ϕj dμ̄, it follows

that the measure
∑

ciμyi
belongs to N . �

Let us check the measurability condition (2.1) in the case that the function
y → μy is the identity:

Lemma 2.2. Let Z be a compact metric space. Then for every Borel set B ⊂ Z,
the function μ ∈ M(Z) �→ μ(B) ∈ R is Borel-measurable.

Proof. Consider the class of Borel sets B ⊂ Z such that μ �→ μ(B) is a measurable
function. This class is evidently closed under complement and nested intersection;
therefore we only need to show that it contains all open sets. Let B be an open
set. Since Z is metric, the set B is an Fσ, and by Urysohn’s Lemma there exists
a uniformly bounded sequence of continuous functions ϕn converging pointwise to
�B . So the function μ �→ μ(B) is the pointwise limit of the sequence of continuous
functions μ �→

∫
ϕn dμ, and so it is measurable, as we wanted to show. �

Thus if Z is a compact metric space and λ ∈ M(M(Z)), then μ =
∫
ν dλ(ν) is

a well-defined element of M(Z). We say that λ is a decomposition of μ.

2.3. Ergodic decomposition. Let f : X → X be a continuous map on a compact
metric space X. We let M(f) ⊂ M(X) denote the set of f -invariant probabilities
and let Merg(f) ⊂ M(f) denote the set of f -ergodic probabilities. Both M(f) and
Merg(f) are Borel subsets; the former is closed and the latter is a Gδ.

7

Given μ ∈ M(f), we let κf,μ ∈ M(M(X)) be the ergodic decomposition of the
measure μ, that is, the unique decomposition of μ such that κf,μ(Merg(f)) = 1.

According to [M3], ergodic decompositions can be obtained as follows.8 There
exists a Borel subset Rf ⊂ X that has full μ measure with respect to any μ ∈ M(f)
such that for any x ∈ Rf , the measure

(2.3) βx = βf,x = lim
n→∞

1

n

n−1∑
j=0

δfjx exists and is f -ergodic.

Then for any μ ∈ M(f), its push-forward by the (evidently measurable) map
x �→ βx is the ergodic decomposition κf,μ; that is, κf,μ(U) = μ(β−1(U)) for any
Borel set U ⊂ M(X). As an immediate consequence of Lemma 2.2, we obtain that
the function μ �→ κf,μ satisfies the measurability condition (2.1):

Lemma 2.3. For any Borel set U ⊂ M(X), the function μ ∈ M(f) �→ κf,μ(U) ∈ R

is measurable.9

3. Some new generic properties

3.1. Generic continuity of the ergodic decomposition. For an integer r ≥ 1,
let Diffr(M) be the set of Cr diffeomorphisms with the Cr topology. Also let

Diff0(M) be the set of homeomorphisms, with the topology under which fn → f if

7See [P, Prop. 1.3].
8Most other proofs of the existence of the ergodic decomposition are more abstract and rely

on Choquet’s theorem; see [P].
9However, the function is not necessarily continuous: in general Merg(f) is not closed, and if

μ0 is a nonergodic accumulation point of ergodic measures, then for some choice of U the function
μ �→ κf,μ(U) is not continuous at μ0.
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f±1
n → f±1 uniformly. Let Diffr

m(M) be the set of elements of Diffr(M) that leave
invariant the measure m. Then Diffr(M) and Diffr

m(M) are Baire spaces for any
integer r ≥ 0.

Recall that if f ∈ Diffr(M) and μ ∈ M(f), then κf,μ ∈ M(M(M)) denotes
the ergodic decomposition of the measure μ. Most of the time we will work with
diffeomorphisms f that preserve Lebesgue measure m, and we abbreviate κf =
κf,m.

Theorem B. Fix an integer r ≥ 0. The points of continuity of the map

f ∈ Diffr
m(M) �→ κf ∈ M(M(M))

form a residual subset.

To get a taste for this result, consider the circle case. Then the points of con-
tinuity of the ergodic decomposition are precisely the irrational rotations and the
orientation-reversing involutions.

Proof of Theorem B. Let ϕ : M → R be a continuous map with
∫
ϕdm = 0. For

each f ∈ Diffr
m(M), let ϕf,n = ϕ + · · · + ϕ ◦ fn−1 and ϕ̂f = limn→∞ ϕf,n/n. The

sequence ‖ϕf,n‖L2(m) is subadditive, and therefore

‖ϕ̂f‖L2(m) = inf
n

‖ϕf,n‖L2(m)

n
.

On the other hand, f �→ ϕf,n is a continuous map from Diffr
m(M) to L2(m). In

particular, we conclude that the function f ∈ Diffr
m(M) �→ ‖ϕ̂f‖L2(m) is upper-

semicontinuous. In particular its points of continuity form a residual subset Rϕ of
Diffr

m(M).
Let L2

0(m) =
{
ϕ ∈ L2(m);

∫
ϕdm = 0

}
. Take a countable dense subset {ϕj} of

L2
0(m) formed by continuous functions. Define a residual subset R =

⋂
j Rϕj

. To
prove the theorem, we will show that each f in R is a point of continuity of the
ergodic decomposition.

To begin, notice that

‖ϕ̂f‖2L2(m) =

∫
M(M)

(∫
ϕdμ

)2

dκf (μ) .

Let D(m) ⊂ M(M(M)) be the set of decompositions of Lebesgue measure m.
We define the variance of a function ϕ ∈ L2

0(m) with respect to a decomposition
λ ∈ D(m) as

Var(ϕ,λ) =

∫
M(M)

(∫
ϕdμ

)2

dλ(μ) .

Thus Var(ϕ,κf ) = ‖ϕ̂f‖2L2(m).

Lemma 3.1. Var(ϕ,λ) is finite and depends continuously on ϕ and λ.

Proof. Given ϕ ∈ L2
0(m), let Φ(μ) =

∫
ϕdμ. By convexity, Φ(μ)2 ≤

∫
ϕ2 dμ.

Integrating with respect to λ, we get

Var(ϕ,λ) = ‖Φ‖2L2(λ) ≤
∫

ϕ2 dm = ‖ϕ‖2L2(m) < ∞.

Hence the triangle inequality in L2(λ) gives

Var1/2(ϕ+ ψ,λ) ≤ Var1/2(ϕ,λ) + Var1/2(ψ,λ) for all ϕ, ψ ∈ L2
0(m).
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Therefore∣∣Var1/2(ϕ,λ)−Var1/2(ψ,λ)
∣∣ ≤ ‖ϕ− ψ‖L2(m) for all ϕ, ψ ∈ L2

0(m),

and so the functions ϕ ∈ L2(m) �→ Var1/2(ϕ,λ) with λ ∈ D(m) form a uniformly
equicontinuous family. Finally, the functions λ ∈ D(m) �→ Var(ϕ,λ) are continu-
ous: this is obvious if ϕ is continuous, and the general case follows by equicontinu-
ity. �

Given f ∈ Diffr
m(M), let D(m, f) be the set of decompositions of m into (non-

necessarily ergodic) f -invariant measures, that is, the set of λ ∈ D(m) such that
λ(M(f)) = 1.

Lemma 3.2. Let f ∈ Diffr
m(M). Then for any ϕ ∈ L2

0(m) and λ ∈ D(m, f),

Var(ϕ,λ) ≤ Var(ϕ,κf ) .

Moreover, if λ ∈ D(m, f) is such that the equality holds for every ϕ ∈ L2
0(m), then

λ = κf .

Proof. Fix f and λ ∈ D(m, f). The measure
∫
κf,μ dλ(μ) (which makes sense by

Lemma 2.3) is a decomposition of m and gives full weight to Merg(f); therefore it
equals κf . So for any ϕ ∈ L2

0(m) we have

Var(ϕ,λ) =

∫ (∫
ϕdμ

)2

dλ(μ)

=

∫ (∫∫
ϕdν dκf,μ(ν)

)2

dλ(μ)

≤
∫∫ (∫

ϕdν

)2

dκf,μ(ν) dλ(μ) (by convexity)

=

∫ (∫
ϕdν

)2

dκf (ν) (since κf =

∫
κf,μ dλ(μ) )

= Var(ϕ,κf ) .

This proves the first part of the lemma. If equality holds above, then for λ-almost
every μ, the function ν �→

∫
ϕdν is constant κf,μ-almost everywhere. By averaging,

that constant must be
∫
ϕdμ. Now assume that this happens, say, for every ϕ in

a countable dense subset D of L2
0(m). Then for λ-almost every μ and κf,μ-almost

every ν, we have
∫
ϕdν =

∫
ϕdμ for all ϕ in D. Hence for λ-almost every μ, the

measure κf,μ is the Dirac mass concentrated on μ, and in particular μ is ergodic.
Since κf is the only decomposition of m giving full weight to Merg(f), we have
λ = κf . �

We now complete the proof of Theorem B. Fix f ∈ R. Take any sequence
fn → f such that κfn has a limit λ. Recall that {ϕj} is a dense subset of L2

0(m).
For each j we have

Var(ϕj ,λ) = lim
n→∞

Var(ϕj ,κfn) (by Lemma 3.1)

= Var(ϕj ,κf ) (since f is a point of continuity of g �→ Var(ϕj ,κg)).

By Lemma 3.1 again it follows that Var(ϕ,λ) = Var(ϕ,κf ) for every ϕ ∈ L2
0(m).

By Lemma 3.2, we have λ = κf . �
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3.2. More on the ergodic decomposition. We may informally interpret Theo-
rem B as follows: Given an m-preserving diffeomorphism f , consider the proportion
(with respect to m) of points in the manifold whose f -orbits have approximately
a certain prescribed statistic; then for generic f this proportion does not change
much if f is perturbed. Let us improve this a little and show that if f is perturbed,
then the set of points whose orbits have approximately a certain prescribed statistic
does not change much.

If U ⊂ M(M) is a Borel set, let XU,f be the set of all x ∈ M such that
1
n

∑n−1
j=0 δfj(x) converges and belongs to U . That is, XU,f = β−1

f (U), where βf is

given by (2.3). Then XU,f is an f -invariant Borel set and μ(XU,f ) = κf,μ(U) for
any μ ∈ M(f).

Lemma 3.3. If fk → f and κfk → κf , then for any open set U ⊂ M(M) with
κf (∂U) = 0 we have

lim
k→∞

m
(
XU,fk � XU,f

)
= 0 .

This lemma gives a precise meaning to the informal discussion above.

Proof. The hypotheses imply that m(XU,fk) → m(XU,f ). We may thus assume
that there exists c > 0 such that Yk = XU,f �XU,fk satisfies m(Yk) > c for all k.
Let

μk =
1

m(Yk)
lim
n→∞

1

n

n−1∑
j=0

(fk)
j
∗(m|Yk).

That is, μk is the probability measure that is absolutely continuous with respect to
m and has density

1

m(Yk)
lim
n→∞

1

n

n−1∑
j=0

�Yk
◦ f j

k .

Then μk is fk-invariant. We claim that

μk(Yk) ≥ c .

Indeed, let P : L2(m) → L2(m) be the orthogonal projection onto the space of fk-
invariant functions, and let ϕ = �Yk

. Then, by Von Neumann’s Ergodic Theorem
(and using that 1 is in the image of P ), we have

m(Yk)μk(Yk) = 〈Pϕ, ϕ〉 = 〈Pϕ, Pϕ〉 ≥ 〈Pϕ, 1〉2 = 〈ϕ, 1〉2 = m(Yk)
2 ,

so μk(Yk) ≥ m(Yk) > c.
By passing to a subsequence, we assume that μk has a limit μ, which is evidently

f -invariant. Since each μk is absolutely continuous with density bounded by c−1,
the same is true for μ. It also follows from the uniform bounds on densities that
μ(XU,f ) = limk→∞ μk(XU,f ) ≥ c.

The definition of Yk implies that κfk,μk
gives no weight to U . We claim that

κfk,μk
→ κf,μ. Because U is open, this implies

κf,μ(U) ≤ lim inf κfk,μk
(U) = 0,

which contradicts μ(XU,f ) ≥ c.
To see the claim, notice that κfk,μk

is absolutely continuous with respect to κfk

with density at most c−1. Indeed, for any Borel set B ⊂ M(M(M)), we have

κfk,μk
(B) = μk(XB,fk) ≤ c−1m(XB,fk) = c−1κfk(B).
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We may assume that κfk,μk
has a limit λ. Then λ is absolutely continuous with

respect to κf . Indeed, for for any continuous Φ ≥ 0, we have∫
Φ dλ = lim

∫
Φ dκfk,μk

≤ c−1 lim

∫
Φ dκfk = c−1

∫
Φ dκf .

In particular, λ(M(M)�Merg(f)) = 0. Moreover,∫
ν dλ(ν) = lim

∫
ν dκfk,μk

(ν) = limμk = μ .

So λ is the f -ergodic decomposition of μ. This proves the claim and hence the
lemma. �

We will show an interesting consequence of Lemma 3.3 (and Theorem B), al-
though we won’t use it directly.

For f ∈ Diffr
m(M), we look again at the map βf : Rf ⊂ M → M(M) defined by

(2.3). Let νf be the measure concentrated on the graph of βf that projects on m,
that is, the push-forward of m by the map (id, βf ).

Corollary 3.4. The points of continuity of the map

f ∈ Diffr
m(M) �→ νf ∈ M(M ×M(M))

are the same as for the map f �→ κf ∈ M(M(M)), and in particular they form a
residual set.

We omit the proof.

3.3. Generic persistence of invariant sets. The next result says that if f is a
generic volume-preserving diffeomorphism, then its measurable invariant sets per-
sist in a certain (measure-theoretic and topological) sense under perturbations of
f .

If η > 0 and Λ ⊂ M is any set, let Bη(Λ) denote the η-neighborhood of Λ, that
is, the set of y ∈ M such that d(y, x) < η for some x ∈ Λ.

Theorem C. Fix an integer r ≥ 0. There is a residual set R ⊂ Diffr
m(M) such

that for every f ∈ R, every f -invariant Borel set Λ ⊂ M , and every η > 0, if
g ∈ Diffr

m(M) is sufficiently close to f , then there exists a g-invariant Borel set Λ̃
such that

Λ̃ ⊂ Bη(Λ) and m(Λ̃ � Λ) < η.

The proof will use Theorem B, Lemma 3.3, and a few other lemmas.

Lemma 3.5. If f ∈ Diffr
m(M) and Λ ⊂ M is an f -invariant Borel set, then for

any η > 0 there exists an open subset U of M(M) such that κf (∂U) = 0 and
m(Λ � XU,f ) < η.

Proof. Take a compact set K and an open set U such that K ⊂ Λ ⊂ U and
m(U�K) < η/6. Choose a continuous function ϕ : M → R such that �K ≤ ϕ ≤ �U .
Given a ∈ R, let U be the set of measures μ ∈ M(M) such that

∫
ϕdμ > a. A

moment’s thought shows that ∂U =
{
μ ∈ M(M);

∫
ϕdμ = a

}
. Hence we can

choose a with 1/3 < a < 2/3 so that κf (∂U) = 0. Notice that XU,f = {ϕ̂ > a}
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mod 0, where ϕ̂ = lim 1
n

∑n−1
j=0 ϕ ◦ f j . Therefore

m(XU,f � Λ) ≤
∫
XU,f�Λ

3ϕ̂ ≤
∫
M�Λ

3ϕ̂ =

∫
M�Λ

3ϕ < η/2 ,

m(Λ�XU,f ) ≤
∫
Λ�XU,f

3(1− ϕ̂) ≤
∫
Λ

3(1− ϕ̂) =

∫
Λ

3(1− ϕ) < η/2 ,

so m(Λ � XU,f ) < η, as desired. �

If V is any set and f ∈ Diffr
m(M), let us denote

Vf =
⋂
n∈Z

fn(V ).

Lemma 3.6. If V is an open set with m(∂V ) = 0, then the measure m(Vf ) varies
upper semi-continuously with f .

Proof. The function being considered is the infimum of a sequence of continuous
functions:

m(Vf ) = inf
k>0

m

⎛
⎝ ⋂

|n|<k

fn(V )

⎞
⎠ . �

Lemma 3.7. For any f ∈ Diffr
m(M), any open set V with m(∂V ) = 0, and any

η > 0, if g ∈ Diffr
m(M) is sufficiently close to f , then m(Vg � Vf ) < η.

Proof. Indeed, for any sequence gk → f we have lim supVgk ⊂ (clV )f , and thus
lim supm(Vgk � Vf ) ≤ m(lim sup(Vgk � Vf )) ≤ m(∂V ) = 0. �

Proof of Theorem C. Fix a countable family C of open subsets of M , each with a
boundary of zero measure, such that for any compact set K and any η > 0, there
exists V ∈ C such that K ⊂ V ⊂ Bη(K). Let R ⊂ Diffm(M) be the intersection
of the residual set of Theorem B with the set of points of continuity of f �→ m(Vf )
over V ∈ C. Due to Lemma 3.6, R is a residual set.

Fix f ∈ R, a Borel f -invariant set Λ, and η > 0. Let V ∈ C be such that
cl Λ ⊂ V ⊂ Bη/2(cl Λ). Using Lemma 3.5, find an open set U ⊂ M(M) such
that κf (∂U) = 0 and m(Λ � XU,f ) < η/4. If g is sufficiently close to f , then
m(XU,g � XU,f ) < η/4, by Lemma 3.3, m(Vg � Vf ) < η/4, by Lemma 3.7, and
m(Vg) > m(Vf )− η/4, by continuity. Then

m(Vf � Vg) = m(Vf ) +m(Vg � Vf )−m(Vg) < η/2.

Given g as above, define Λ̃ = Vg ∩XU,g. This is a g-invariant Borel set contained
in Bη(Λ). Moreover,

Λ̃ � Λ ⊂ (Λ� Vg) ∪ (Λ � XU,g) ⊂ (Vf � Vg) ∪ (Λ � XU,f ) ∪ (XU,f � XU,g),

and therefore m(Λ̃ � Λ) < η. �

3.4. Generic continuity of the Lyapunov spectrum.

Theorem D. Fix an integer r ≥ 1. For each i, the points of continuity of the map

λi : Diffr
m(M) → L1(m)

form a residual subset.
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The proof uses Theorem B and Lemma 3.3:

Proof. For any μ ∈ M(M) (f -invariant or not), we define

Li(f, μ) = inf
n

L
(n)
i (f, μ), where L

(n)
i (f, μ) =

∫
1

n
log ‖ ∧i Dfn‖ dμ .

Then Li : Diffr
m(M) × M(M) → R is an upper-semicontinuous function. Notice

that if μ ∈ M(f), then

Li(f, μ) =

∫
Li(f, x) dμ(x), where Li(f, x) = λ1(f, x) + · · ·+ λi(f, x) .

Let Ri ⊂ Diffr
m(M) be the set of continuity points of the map Li(·,m). Let R be

the residual set given by Theorem B. Fix any f ∈ Ri ∩ R. To prove the theorem,
we will show that the map Li : Diffr

m(M) → L1(m) is continuous on f .

Let ε > 0. Choose n such that L
(n)
i (f,m) < ε + Li(f,m). By continuity of

L
(n)
i (·, ·) and compactness of suppκf , there are open sets U ⊃ suppκf and V � f

such that
g ∈ V , μ ∈ U ⇒ |L(n)

i (g, μ)− L
(n)
i (f, μ)| < ε .

Let c0 < · · · < cJ be real numbers such that cj − cj−1 < ε and the set of μ ∈ U
such that L

(n)
i (f, μ) ∈ (−∞, c0] ∪ {c1, . . . , cJ−1} ∪ [cJ ,+∞) has zero κf -measure.

Define a κf -mod 0 partition of U in open sets Uj = {μ ∈ U ; cj−1 < L
(n)
i (f, μ) <

cj}, j = 1, . . . , J (whose boundaries have zero κf -measure). Define a function

Γ : M(M) → R by Γ =
∑J

j=1 cj�Uj
.

Claim. For every g sufficiently close to f , we have

(3.1)

∫ ∣∣Li(g, μ)− Γ(μ)
∣∣ dκg(μ) < O(ε).

Indeed, since f ∈ R, if g is close to f , then the set Z = M(M) �
⋃J

j=1 Uj has
κg-measure less than ε. On the other hand,

μ ∈ M(g) ∩ Uj ⇒ Li(g, μ) ≤ L
(n)
i (g, μ) < L

(n)
i (f, μ) + ε < cj + ε = Γ(μ) + ε

⇒
∣∣Li(g, μ)− Γ(μ)

∣∣ ≤ 2ε− Li(g, μ) + Γ(μ) < 3ε− Li(g, μ) + L
(n)
i (f, μ) .

Therefore, letting C be an upper bound for log ‖
∧i Dg‖ on a neighborhood of f ,

and also for |c0|, |cJ |, we can write∫ ∣∣Li(g, μ)− Γ(μ)
∣∣ dκg(μ) ≤ 4Cκg(Z) + 3ε+

∫ [
L
(n)
i (f, μ)− Li(g, μ)

]
dκg(μ)

≤ (4C + 3)ε+ L
(n)
i (f,m)− Li(g,m)

≤ (4C + 4)ε+ Li(f,m)− Li(g,m).

Since f ∈ Ri, Li(g,m) is close to Li(f,m) provided g is close enough to f , thus
completing the proof of (3.1).

Assume that g is close enough to f so that m(XUj ,g � XUj ,f ) < ε for each j (see
Lemma 3.3).

We claim that the function Li(g) is close in L1(m) to
∑J

j=1 cj�XUj,g
and hence to∑J

j=1 cj�XUj ,f
and hence to Li(f). Indeed, the functions Li(g) and

∑J
j=1 cj�XUj ,g

are both g-invariant, and it follows that their L1(m)-distance is exactly the left
hand side of (3.1). �
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In fact, the proof above yields a more general result, which we now describe. For
each f ∈ Diffr

m(M), let ϕf,n, n ∈ Z+, be a sequence of continuous functions that is
subadditive with respect to f , that is,

ϕf,k+n ≤ ϕf,k ◦ fn + ϕf,n .

Also assume that f �→ ϕf,n ∈ C0(M,R) is continuous for each n and that 1
n |ϕf,n| ≤

Cf for some locally bounded function f �→ Cf ∈ R. By the Subaddditive Ergodic
Theorem, Φf = limn→∞

1
nϕf,n is defined m-almost everywhere. Our result is:

Scholium. The points of continuity of the map f ∈ Diffr
m(M) �→ Φf ∈ L1(m)

form a residual subset.

Remark 3.8. Theorems B, C and D remain true (with identical proofs) if Lebesgue
measure m is replaced by any other Borel probability μ. However, the spaces
Diffr

μ(M) are in general very small, and we couldn’t conceive of any applications.

4. More ingredients

4.1. Known C1-generic results. Here we collect some previously known residual
properties for volume-preserving maps. The first is the volume-preserving version
of the Kupka–Smale Theorem, see [R]:

Theorem 4.1. Assume dimM ≥ 3, r ∈ Z+. Generically in Diffr
m(M), every peri-

odic orbit is hyperbolic, and for every pair of periodic points p and q, the manifolds
Wu(p) and W s(q) are transverse.

The next is a “connecting” property:

Theorem 4.2. Assume dimM ≥ 3. Generically in Diff1
m(M), if p and q are

periodic points with dimWu(p) ≥ dimWu(q), then Wu(O(p))∩W s(O(q)) is dense
in M .

Indeed, Arnaud shows that generically if p and q are periodic points with

dimWu(p) ≥ dimWu(q),

then

Wu(O(p)) ∩W s(O(q)) is dense in clWu(O(p)) ∪ clW s(O(q))

(see [A1], Proposition 18 and §1.5). The latter set generically is the whole man-
ifold M . More precisely, Bonatti and Crovisier had shown that each homoclinic
class10 equals M (see [BC], Theorem 1.3 and its proof on page 79; here we use the
assumption that M is connected). Hence Theorem 4.2 holds. (It is also shown in
[BC] that the generic f is transitive, but we won’t use this.)

Theorem 4.3 ([BV]). For a generic f in Diff1
m(M) and for m-a.e. x ∈ M , the

Oseledets splitting along the orbit of x is (trivial or) dominated.

Corollary 4.4. For a generic f in Diff1
m(M), if Gi = {x ∈ M ; λi(f, x) >

λi+1(f, x)} has positive measure, then there exist a nested sequence of measurable
sets Λ1 ⊂ Λ2 ⊂ · · · ⊂ Gi such that m(Gi � Λn) → 0 as n → ∞, and each Λn is
f -invariant and has a dominated splitting of index i.

10The homoclinic class of a hyperbolic periodic point p is the closure of the set of points of
transverse intersection between Wu(O(p)) and W s(O(p)).
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The residual set of Corollary 4.4 is the same as in Theorem 4.3. (In fact, it is
the set of points of continuity of all m-integrated Lyapunov exponents; see [BV].)

The following is the volume-preserving version of a result from [ABC] related to
Mañé’s Ergodic Closing Lemma:

Theorem 4.5. For a generic f in Diff1
m(M), the following holds: Given any μ ∈

Merg(f) there is a sequence of measures μn ∈ Merg(f), each supported on a periodic
orbit, such that:

• suppμn converges to suppμ in the Hausdorff topology;
• μn converges to μ in the weak-star topology;
• the Lyapunov exponents of f with respect to μn converge to the exponents
with respect to μ.

Proof. The same statement for the dissipative case is Theorem 4.1 from [ABC],
and their proof applies to our volume-preserving situation, using the Kupka–Smale
Theorem, Theorem 4.1, and the (easier) volume-preserving version [A2] of Mañé’s
Ergodic Closing Lemma [M1]. �

We will need an extension of the result above that deals with nonergodic mea-
sures:

Theorem 4.6. For a generic f in Diff1
m(M), the following holds: Given any μ ∈

M(f) there is a sequence of measures μn ∈ M(f), each with finite support, such
that:

• suppμn converges to suppμ in the Hausdorff topology;
• letting L = Lf : M → M × R

d be given by

(4.1) L(x) =
(
x, λ1(f, x), . . . , λd(f, x)

)
,

then the sequence of measures L∗μn converges to L∗μ in the weak-star topol-
ogy (and in particular μn → μ as well).

Proof. Let f be generic in the sense of Theorem 4.5. Thus the conclusion holds for
ergodic measures, and we will show that it also holds for any μ ∈ M(f).

Since κf,μ is a decomposition of μ, we have

L∗μ =

∫
L∗ν dκf,μ(ν) .

We apply Lemma 2.1 to approximate this integral by a finite convex combination.
Thus we find ergodic measures ν1, . . . , νk with supports contained in suppμ and
positive numbers c1, . . . , ck with

∑
ci = 1 such that

∑
ciL∗νi is weak-star-close

to L∗μ. By Theorem 4.5, for each νi we take ν̃i ∈ M(f) supported on a finite
set Hausdorff-close to supp νi such that L∗ν̃i is weak-star-close to L∗νi. Thus the
measure μ̃ =

∑
ciν̃i is supported on a finite set Hausdorff-close to suppμ and is

such that L∗μ̃ is weak-star-close to L∗μ, as desired. �
4.2. C1-dominated Pesin theory. We will need the fact that domination plus
nonuniform hyperbolicity guarantees the existence of unstable and stable manifolds.
This was claimed long ago by Mañé [M2] and recently made precise by Abdenur,
Bonatti, and Crovisier [ABC, §8]. However, their result does not fit directly to our
needs, and thus we take an independent approach. More precisely, we first give a
sufficient condition (4.2) for the existence of a large stable manifold (Theorem 4.7)
at a given point, and then we estimate the measure of the set of points that satisfy
this condition, based on information about the Lyapunov exponents (Lemma 4.8).
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4.2.1. Existence of invariant manifolds. Let f ∈ Diff1(M); the (Pesin) stable set
at a point x ∈ M is

W s(x) =

{
y ∈ M ; lim sup

n→+∞

1

n
log d(fny, fnx) < 0

}

and analogously for the unstable set.
From now on, fix f ∈ Diff1(M). Assume Λ ⊂ M is an f -invariant Borel set with

a dominated splitting TΛM = Ecu ⊕ Ecs.
For each � ∈ Z+, let Bl

s(�, f) be the set of points x ∈ Λ such that

(4.2)
1

n

n−1∑
j=0

log ‖Df �(f �jx)|Ecs‖ < −1 for every n ∈ Z+.

Also define Blu(�, f) as Bls(�, f−1), that is, the set of x ∈ Λ such that
1
n

∑n−1
j=0 log ‖Df−�(f−�jx)|Ecu‖ < −1 for every n ∈ Z+. The sets Bls(�, f) and

Blu(�, f) are called unstable and stable Pesin blocks. We also denote Bl(�, f) =
Bls(�, f) ∩ Blu(�, f) and call this set a Pesin block.11

We fix cone fields Ccu, Ccs around Ecu, Ecs that are strictly invariant. More
precisely, for each y ∈ Λ the open cone Ccu

x ⊂ TxM contains Ecu
x , is transverse to

Ecs
x , and the closure of its image by Df(x) is contained in Ecs

fx; analogously for
Ccs. These cones can be extended to a small open neighborhood V of cl Λ so that
strict invariance still holds for all points in V that are mapped inside V . If g is
sufficiently C1-close to f , then the cone fields remain strictly invariant and there is
a dominated splitting over the maximal g-invariant set in V .

Let x ∈ Λ, r > 0 be small, and let ϕ be a C1 map from the ball of radius r
around 0 in Ecs(x) to Ecu(x). Let D be the graph of the map v �→ expx(v+ϕ(v)).
If in addition the tangent space of D at each point is contained in Ccs and equals
Ecs(x) at x, then we say that D is a center stable disk of radius r around x.

Theorem 4.7 (Stable manifold). Consider an f -invariant set Λ with a dominated
splitting. For each � ∈ Z+ there exists r > 0 such that if x ∈ Bls(�, f), then W s(x)
contains a center stable disk of radius r around x. Moreover, the same r works for
every diffeomorphism sufficiently (depending on �) C1-close to f .

This result can be deduced from the Plaque Family Theorem from [HPS] (see
also [ABC]). We prefer, however, to give a direct proof:

Proof. We work on exponential charts. Fix � and take x ∈ Bls(�, f). Let cn =∑n−1
k=0 log ‖Df �|Ecs(fk�(x))‖, and let Bn be the ball of radius 2recnen/2 around

fn�(x). Let Dn
n be the intersection of Bn with the affine space through fn�(x)

tangent to Ecs(fn�(x)). Define Dk
n for k = n − 1, . . . , 0 by setting Dk

n as the
intersection of Bk with f−�(Dk+1

n ). Notice that if r is small, then each Dk
n will be

tangent to the cone field and in fact its tangent space will be close to Ecs(fk�(x)).
By the definition of Bls(�, f), we see that ∂Dk

n ⊂ ∂Bk for each 0 ≤ k ≤ n. We claim
that the tangent space to D0

n is uniformly equicontinuous: for every ε > 0 there
exists δ > 0 such that d(TyD

0
n, Ty′D0

n) < ε whenever y, y′ ∈ D0
n are at distance at

most δ. Thus any accumulation point of D0
n is a center stable disk D0 of radius at

least r which is clearly contained in W s(x).

11Although this definition does not coincide with the usual one in Pesin Theory, as e.g. [BP,
§2.2.2], we believe there is no risk of confusion.
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To see the claim, observe that domination implies that there are constants C,
γ > 0 such that for every k, if y, y′ ∈ D0

n are sufficiently close (depending on k)
and F , F ′ are subspaces tangent to Ccs(fk�(y)) and Ccs(fk�(y′)) respectively, then

d
(
(Dfk�(y))−1(F ), (Dfk�(y′))−1(F ′)

)
< Ce−γk .

It follows that for each 0 ≤ k ≤ n,

d
(
TyD

0
n, Dfk�(y)−1(Ecs(fk�(x)))

)
< Ce−γk .

Thus for every ε > 0, if k ≥ 0 is minimal with Ce−γk < ε/3 and if d(y, y′) is
sufficiently small (depending on k), then

d(TyD
0
n, Ty′D0

n) <
2ε

3
+ d(Dfk�(y)−1(Ecs(x)), Dfk�(y′)−1(Ecs(x))) < ε,

as claimed. �

4.2.2. The size of the Pesin blocks. In order to extract useful consequences from
Theorem 4.7, we need to estimate the measure of the Pesin blocks. We will show
that if λcs = lim�→+∞

1
� log ‖Df �|Ecs‖ is negative on most of Λ, then Bls(�, f)

covers most of Λ, provided � is large enough. This follows from the next lemma,
which works for any f -invariant measure. The lemma is also suitable to study the
variation of the Pesin block with the diffeomorphism.

Lemma 4.8. Let μ ∈ M(f). Assume that η > 0, α > 0, and � ∈ Z+ satisfy the
following conditions:

μ{x ∈ Λ; λcs(x) > −α} < η,(4.3)

� >
1

αη
,(4.4)

∫
Λ

∣∣∣∣1� log ‖Df �|Ecs‖ − λcs

∣∣∣∣ dμ < αη.(4.5)

Then

μ
(
Λ� Bls(�, f)

)
< 3η.

To see how the lemma can be applied, assume, for example, that λcs < 0 μ-
almost everywhere on Λ. Given a small η > 0 we first take α satisfying (4.3), and
then choose � satisfying (4.4) and (4.5). The lemma then says that the Pesin block
Bls(�, f) is large.

Proof. For x ∈ Λ, let

(4.6) ϕ(x) = log ‖Df �(x)|Ecs‖, ϕ∗(x) = max
n≥1

1

n

n−1∑
j=0

ϕ(f �j(x)).

Thus Bls(�, f) = {ϕ∗ < −1}. Applying the Maximal Ergodic Theorem to the
restriction of the map f � to the (invariant) set of points x ∈ Λ where λcs(x) ≤ −α,
we obtain ∫

{ϕ∗≥−1}∩{λcs≤−α}
(ϕ+ 1) dμ ≥ 0.
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Therefore

0 ≤
∫
{ϕ∗≥−1}∩{λcs≤−α}

ϕ+ 1

�
dμ

≤ αη +

∫
{ϕ∗≥−1}∩{λcs≤−α}

ϕ

�
dμ (by (4.4))

≤ 2αη +

∫
{ϕ∗≥−1}∩{λcs≤−α}

λcs dμ (by (4.5))

≤ 2αη − αμ
(
{ϕ∗ ≥ −1} ∩ {λcs ≤ −α}

)
and μ

(
{ϕ∗ ≥ −1}∩{λcs ≤ −α}

)
≤ 2η. It follows from (4.3) that the set {ϕ∗ ≥ −1}

has μ-measure less than 3η, as we wanted to show. �

4.3. C2 Pesin and ergodicity. Since we will use Pesin Theory, the following
result will have an important role:

Theorem 4.9 ([Av]). The subset Diff2
m(M) of Diff1

m(M) is dense.

For the rest of this subsection, let f be a fixed C2 volume-preserving diffeomor-
phism. By Pesin Theory,12 Wu(x) and W s(x) (as defined in §4.2.1) are immersed
manifolds for every x in a full probability Borel set Rf . The dimension of Wu(x)
is the number (with multiplicity) of positive Lyapunov exponents at x, and sym-
metrically for W s(x).

Following [RRTU], we define the unstable Pesin heteroclinic class of a hyperbolic
periodic point p as

Phcu(p) =
{
x ∈ Rf ; W

u(x) transversely intersects

W s(O(p)) in at least one point
}
.

This is always an invariant Lebesgue measurable set.13 This set has the following u-
saturation property: for m-almost every x in Phcu(p), almost every point in Wu(x)
(with respect to Riemannian volume on the submanifold) belongs to Rf and thus
to Phcu(p). This follows from the absolute continuity of Pesin manifolds; see [BP,
§8.6.2]

Analogously we define the stable Pesin heteroclinic class Phcs(p). The Pesin
heteroclinic class14 of p is defined as Phc(p) = Phcu(p) ∩ Phcs(p).

The usefulness of Pesin heteroclinic classes comes from the following result:

Theorem 4.10 (Criterion for Ergodicity; Theorem A from [RRTU]). Let p be a
hyperbolic periodic point for f ∈ Diff2

m(M). If both sets Phcu(p) and Phcs(p) have
positive m-measure, then they are equal m-mod 0, and the restriction of m to any
of them is an ergodic measure for f .

12A recent comprehensive reference in book form is [BP].
13Here is a proof of measurability: For any y ∈ M , let Uy ⊂ TyM be the set of vectors

that are exponentially contracted under negative iterations; this is a Borel measurable function.
Notice that if y belongs to a Pesin manifold W s(x), then TyWu(x) = Uy . Let Y be the subset of
y ∈ W s(O(p)) such that Uy is transverse to W s(O(p)); this is a Borel set. Let Z be the subset
of P × Y formed by pairs (x, y) such that y ∈ Wu(x); this is a Borel set. By the Measurable
Projection Theorem [CV, Theorem III.23], the projection Phcu(p) of Z in the first coordinate is
Lebesgue measurable.

14This set is called an ergodic homoclinic class in [RRTU].
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Let us observe two properties of Pesin heteroclinic classes:

Lemma 4.11 (Remark 4.4 from [RRTU]). If p and q are hyperbolic periodic points
such that Wu(O(p)) and W s(O(q)) have nonempty transverse intersection, then
Phcu(p) ⊂ Phcu(q) and Phcs(q) ⊂ Phcs(p).

Lemma 4.12. If p is a hyperbolic periodic point with m(Phcu(p)) > 0, then
Wu(O(p)) ⊂ ess cl Phcu(p).

Here ess clX denotes the essential closure of a set X ⊂ M , that is, the set of
points x ∈ M such that m(X ∩ V ) > 0 for every neighborhood V of x.

Proof of Lemma 4.12. Assume that m(Phcu(p)) > 0. Recall that the set Rf is
the union of a sequence of blocks and that in each of these there are local Pesin
manifolds of uniform size that depend on the point in a uniformly continuous way
with respect to the C1 topology. Therefore we can find a continuous family of
disks Dy, where y runs over a compact subset K of W s(O(p)), with the following
properties: each disk Dy contains y, is contained in a Pesin stable manifold, and
is transverse to W s(O(p)); the union

⋃
y∈K Dy has positive measure. Now let U

be any open set intersecting Wu(O(p)). By the Lambda Lemma, there is n > 0
such that f−n(U) intersects all disks Dy, y ∈ K. By the absolute continuity of
Pesin manifolds, this implies that

⋃
y Dy ∩ f−n(U) has positive m measure (use

[BP, Corollary 8.6.9]). Since the class Phcu(p) contains mod 0 the union of disks
and is invariant, we conclude that its intersection with U has positive measure. �

5. Proof of the main result

In this section we use all previous material to prove Theorem A. We assume
from now on that dimM ≥ 3, because otherwise the theorem is reduced to the
Mañé–Bochi Theorem [B1].

Let R ⊂ Diff1
m(M) be the intersection of the residual sets given by Theorems B,

C, D, and 4.1 with r = 1, and also Theorems 4.2, 4.3, and 4.6. Fix any f ∈ R; we
will show that it satisfies the conclusions of Theorem A. This will be done in two
steps:

• In Lemma 5.1 we show that C2 perturbations of f have an ergodic component
with positive Lebesgue measure (and some additional properties).

• Using continuity of the ergodic decomposition at the original C1-diffeomor-
phism f (along with other things), we show that it already has the desired
properties.

For i ∈ {1, . . . , d−1}, let Nuhi(f) be the set of points x ∈ Nuh(f) that have index
i, that is, the set of Lyapunov regular points such that λi(f, x) > 0 > λi+1(f, x).

Lemma 5.1. Let f ∈ R and i ∈ {1, . . . , d − 1}. Assume that Λ ⊂ Nuhi(f) is a
Borel f -invariant set of positive measure that has a dominated splitting of index
i. Then for any ε > 0, there exist finitely many (hyperbolic) periodic points p1,
. . . , pJ of f of index i with the following properties: For every volume-preserving
C2-diffeomorphism g sufficiently C1-close to f , there exists j ∈ {1, . . . , J} such that
if pg = pgj denotes the continuation of pj (that is, the unique g-periodic point that

is close to pj and has the same period), then:

a) the measure m|Phc(pg, g) is nonzero and ergodic for g;
b) Phc(pg, g) ⊂ Nuhi(g) mod 0;
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c) Phc(pg, g) ⊂ Bε(Λ) mod 0;
d) m

(
Phc(pg, g) � Λ

)
< ε.

Notice that if m(Nuhi(f)) > 0, then by Corollary 4.4 there always exists a set
Λ satisfying the hypotheses of the lemma; moreover Λ can be taken so that the
measure of Nuhi(f) � Λ is as small as desired. (In fact, since we will later prove
that m|Nuhi(f) is ergodic, any set Λ that satisfies the hypotheses of the lemma
coincides mod 0 with Nuhi(f).)

Proof of Lemma 5.1. Fix a Borel invariant set Λ ⊂ Nuhi(f) with a dominated
splitting Ecu ⊕ Ecs of index i. Also fix a positive number ε, which we can assume
is less than m(Λ). As in §4.2.1, we fix a neighborhood V = Br∗(Λ) and strictly
invariant cone fields Ccu, Ccs on it. Then, for every g sufficiently C1-close to f
and � ∈ Z+, we let Bls(�, g) and Blu(�, g) be the associated Pesin s- and u-blocks,
viewed as subsets of the maximal g-invariant set contained in Br∗(Λ).

Let η = ε/200. Since λi+1(f, x) < 0 < λi(f, x) for x ∈ Λ, we can find α ∈ (0, 1)
such that

m
{
x ∈ Λ; λi+1(f, x) > −α or λi(f, x) < α

}
< η and(5.1)

m
{
x ∈ Λ; λi+1(f, x) = −α or λi(f, x) = α

}
= 0 .(5.2)

Let � > 1/(αη) be such that

(5.3)

∫
Λ

∣∣∣1
�
log ‖Df �|Ecs(x)‖ − λi+1(f, x)

∣∣∣ dm(x)

+

∫
Λ

∣∣∣1
�
log ‖Df−�|Ecu(x)‖ − λi(f, x)

∣∣∣ dm(x) < αη .

Also fix a positive r < r∗ such that if g is close to f and x, y are points in Bl(�, g)
whose distance is less than r, then the Pesin manifolds Wu(x) and W s(y) have a
transverse intersection.

Once these constants are fixed, let us prove three sublemmas.

Sublemma 5.2 (The Pesin block is robustly large). If g is sufficiently close to f ,
then

m
(
Λ� Bl(�, g)

)
< 61η.

Proof. Let C = maxM | log ‖Df±1‖|. By Theorem C (and the fact that f ∈ R), for
any g sufficiently close to f there exists a g-invariant Borel set Λg ⊂ Br∗(Λ) such
that m(Λg � Λ) < C−1αη. Taking g sufficiently close to f , we can guarantee that∣∣∣∣1� log ‖Dg�|E�

g‖ −
1

�
log ‖Df �|E�

f‖
∣∣∣∣ < αη on Λ ∩ Λg, � = cu, cs.

By Theorem D (and the fact that f ∈ R) we can also suppose that for j = i, i+1,
the L1-distance between λj(g, ·) and λj(f, ·) is less than αη and is small enough so
that

m
{
x ∈ M ; |λj(g, x)− λj(f, x)| > α/2

}
< η .

We will check that the hypotheses of Lemma 4.8 are satisfied with μ = m, g in
place of f , Λg in place of Λ, α/2 in place of α, and 10η in place of η. That is, we
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have

m{x ∈ Λg; λi+1(g, x) > −α/2} < 10η,(5.4)

� > 1/(5αη) ,(5.5) ∫
Λg

∣∣∣∣1� log ‖Dg�|Ecs
g ‖ − λi+1(g)

∣∣∣∣ dm < 5αη.(5.6)

First, the set {x ∈ Λg; λi+1(g, x) > −α/2} is contained in the union of the three
sets

Λg
� Λ, {x ∈ Λ; λi+1(f, x) > −α}, {x ∈ M ; |λi+1(g, x)− λi+1(f, x)| > α/2} ,

and each of them has measure less than η; thus (5.4) holds. Second, (5.5) is true
by the definition of �. Third,∫

Λg

∣∣∣∣1� log ‖Df �|Ecs
g ‖ − λi+1(g)

∣∣∣∣
≤

∫
Λg∩Λ

∣∣∣∣1� log ‖Dg�|Ecs
g ‖ − λi+1(g)

∣∣∣∣+ Cm(Λg
� Λ)

≤ αη +

∫
Λg∩Λ

∣∣∣∣1� log ‖Df �|Ecs
f ‖ − λi+1(f)

∣∣∣∣+ ‖λi+1(f)− λi+1(g)‖L1 + αη

≤ 4αη .

So (5.6) is also satisfied.
Lemma 4.8 then gives m(Λg

� Bls(�, g)) < 30η. An analogous estimate gives
m(Λg

� Blu(�, g)) < 30η. It follows that

m(Λ� Bl(�, g)) ≤ m(Λg
� Bl(�, g)) +m(Λ� Λg) < 61η. �

Let mΛ be the f -invariant measure mΛ(A) = m(Λ ∩ A)/m(Λ).

Sublemma 5.3. If μ is a probability measure sufficiently weak-star-close to mΛ,
then

mΛ

(
Br(G)

)
≥ μ(G)− η for any Borel set G.

Proof. We choose an r-fine partition of unity, that is, a family of continuous non-
negative functions ψj : M → R, j = 1, . . . , J , such that

∑
j ψj = 1 and each set

suppψj = cl {ψj �= 0} has diameter less than r. Now assume that μ is a measure
close enough to mΛ so that∫

ψj dμ ≤
∫

ψj dmΛ +
η

J
for each j.

Given a Borel set G, consider all functions ψj such that suppψj ⊂ Br(x) for some

x ∈ G, and let ψ̂ be their sum. Notice that

�G ≤ ψ̂ ≤ �Br(G) .

Therefore

μ(G) ≤
∫

ψ̂ dμ ≤
∫

ψ̂ dμ+ η ≤ mΛ

(
Br(G)

)
+ η. �

Sublemma 5.4 (Covering most of Λ by balls around good periodic points). There
exists a finite f -invariant set F ⊂ Br(Λ) such that

m
(
Λ�Br

(
F ∩ Bl(�, f)

))
< 7η .
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Proof. The idea is to use Lemma 4.8 again.
By Theorem 4.6, we can find a measure μ supported on a finite set F that is

Hausdorff-close to suppmΛ = ess cl Λ (and in particular contained in Br(Λ)) such
that L∗μ is weak-star-close to L∗mΛ, where L is given by (4.1). In particular,
(λi+1)∗μ is close to (λi+1)∗mΛ. It then follows from (5.1) and (5.2) that

μ
{
x ∈ M ; λi+1(f, x) > −α

}
< η ,

and in particular, condition (4.3) holds (with F in place of Λ).
The proximity between L∗μ and L∗mΛ also implies that the integrals of the

function
∣∣1
� log ‖Df �|Ecs‖ − λi+1(f)

∣∣ with respect to the measures μ and mΛ are
close. (Indeed we can write the integral with respect to mΛ as∫

M×Rd

∣∣∣∣1� log ‖Df �|Ecs(x)‖ − yi+1

∣∣∣∣ d(L∗mΛ)(x, y1, . . . , yd),

and the integrand is a continuous function.) In particular, condition (4.5) (with F
in place of Λ) follows from (5.3).

Thus we can apply Lemma 4.8 and get that μ(F � Bls(�, f)) < 3η. The same
estimate holds for Blu(�, f). Now applying Sublemma 5.3 to the set G = F∩Bl(�, f)
we obtain mΛ(Br(G)) ≥ μ(G)− η > 1− 7η, and in particular

m(Λ�Br(G)) ≤ mΛ(Λ�Br(G)) < 7η . �

We continue with the proof of Lemma 5.1. Let F be given by Sublemma 5.4.
For each p ∈ F and g close to f , let pg denote the continuation of p, and let
F g = {pg; p ∈ F}. Notice that

p ∈ F ∩ Bl(�, f) ⇒ pg ∈ F g ∩ Bl(�, g) for all g sufficiently close to f .

Indeed, for periodic points, the belongingness to the Pesin block involves only a
finite number of (open) conditions.

Thus it follows from Sublemma 5.4 that for g sufficiently close to f ,

m
(
Λ�Br

(
F g ∩ Bl(�, g)

))
< 10η .

This, together with Sublemma 5.2, gives

(5.7) m

(
Λ�

(
Br

(
F g ∩ Bl(�, g)

)
∩ Bl(�, g)

))
< 100η =

ε

2
< m(Λ) .

In particular, there exists at least one point pg ∈ F g ∩ Bl(�, g) such that Br(p
g) ∩

Bl(�, g) has positive measure. It follows from the definition of r that

Br(p
g) ∩ Bl(�, g) ⊂ Phc(pg, g) mod 0,

and so m(Phc(pg, g)) > 0. Now assume that g is C2. Then, by Theorem 4.10, the
restriction of m to Phc(pg, g) is an ergodic measure for g; this proves part a) of
the lemma. This measure gives positive weight to Bl(�, g), which is contained in
the g-invariant set Nuhi(g). Ergodicity implies that Nuhi(g) ⊃ Phc(pg, g) mod 0,
which is part b) of the lemma.

We claim that this class Phc(pg, g) does not depend on the choice of the point
p. More precisely, if q is another point in F ∩ Bl(�, f) such that Br(q

g) ∩ Bl(�, g)
also has positive measure, then Phc(pg, g) = Phc(qg, g) mod 0. Indeed, since p and
q have the same index i, the manifolds Wu(Of (p)) and W s(Of (q)) have nonempty
intersection by Theorem 4.2, which is transverse by Theorem 4.1. Assuming that
g is sufficiently close to f , the unstable manifolds of Og(p

g) still have a nonempty
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transverse intersection with the stable manifold of O(qg). Thus, by Lemma 4.11,
Phcu(pg, g) ⊂ Phcu(qg, g) and Phcs(qg, g) ⊂ Phcs(pg, g). Since those sets have
positive measure, Theorem 4.10 implies that they are all equal mod 0.

It follows from the claim and (5.7) that

(5.8) m
(
Λ� Phc(pg, g)

)
< 100η < ε/2.

To complete the proof, assume that g is sufficiently close to f so that, by Theo-
rem C, it has an invariant set Λg with

Λg ⊂ Bε(Λ) and m
(
Λg � Λ

)
< ε/2 .

Then

m
(
Λg ∩ Phc(pg, g)

)
≥ m(Λ)−m

(
Λg

� Λ
)
−m

(
Λ� Phc(pg, g)

)
> m(Λ)− ε

2
− ε

2
> 0.

So ergodicity implies that Phc(pg, g) ⊂ Λg mod 0. In particular, Phc(pg, g) ⊂ Bε(Λ)
mod 0, which is part c), and m

(
Phc(pg, g) � Λ

)
< ε/2, which together with (5.8)

gives part d). The proof of Lemma 5.1 is completed. �

Proof of Theorem A. Take a diffeomorphism f in the set R described before. If
the set Nuh(f) has zero measure, then there is nothing to show, so assume this is
not the case. Take i ∈ {1, . . . , d− 1} such that m(Nuhi(f)) > 0.

Proof that m|Nuhi(f) is ergodic. Let a = m(Nuhi(f)) and μ = a−1 · m|Nuhi(f).
By contradiction, assume that μ is not ergodic for f . Then, in the notation of
Section 3, we have κf ({μ}) = 0. Let U ⊂ M(f) be an open set containing μ
with κf (U) < a and κf (∂U) = 0. Using Theorem 4.9, choose a sequence gn of
C2 volume-preserving diffeomorphisms converging to f in the C1-topology. Using
Lemma 5.1, we can find for each sufficiently large n a Borel set Hn such that the
measure m|Hn is nonzero, invariant and ergodic with respect to gn, and moreover
m
(
Hn � Nuhi(f)

)
→ 0 as n → ∞. Denote by μn the normalization of m|Hn; then

μn → μ. Since μn is gn-ergodic, we have κgn({μn}) = m(Hn) → a. On the other
hand, for sufficiently large n we have κgn({μn}) ≤ κgn(U). But, by Theorem B,
κgn(U) → κf (U) < a. This contradiction proves ergodicity.

Proof that Nuhi(f) is essentially dense. By contradiction, assume this is not the
case. Thus there exists z ∈ M and ε > 0 such that m(B2ε(z) ∩ Nuhi(f)) = 0. Let
Λ be the set of Lebesgue density points of Nuhi(f); then

(5.9) Λ ∩B2ε(z) = ∅.

Since f |Λ has a dominated splitting, we can apply Lemma 5.1 and find periodic
points p1, . . . , pJ . By Theorem 4.2, each manifold W s(O(pj)) is dense in M . Thus,
W s(O(pgj ), g) ∩ Bε(z) �= ∅ for every g sufficiently close to f and every j. Take a

C2 diffeomorphism g very close to f ; then W s(O(pgj ), g) ∩ Bε(z) �= ∅ for every j.

Moreover, by Lemma 5.1 there is j such that Phc(pgj ) has positive measure. By

Lemma 4.12, the essential closure of Phcs(pgj , g) (which equals ess cl Phc(pgj , g) by

Theorem 4.10) contains W s(O(pj), g); in particular, Phc(pgj ) ∩ Bε(z) has positive

measure. Lemma 5.1 also says that Phc(pgj ) ⊂ Bε(Λ) mod 0, which contradicts

(5.9).



2906 A. AVILA AND J. BOCHI

Proof of the uniqueness of the index i. Let k ∈ {1, . . . , d−1} be such that Nuhk(f)
has positive measure. By symmetry, we can assume that i ≥ k. Applying Lemma
5.1 twice, namely, to the sets of Lebesgue density points of Nuhi(f) and Nuhk(f),
we obtain periodic points p1, . . . , pJ of index i and q1, . . . , qL of index k. By The-
orem 4.2, the manifolds Wu(Of (pj)) and W s(Of (q�)) have nonempty intersection,
which is transverse by Theorem 4.1. Now consider a C2 diffeomorphism g that
is C1-close to f . Then the manifolds Wu(Og(p

g
j )) and W s(Og(q

g
� )) still intersect

transversely. Thus, by Lemma 4.11, Phcu(pgj , g) ⊂ Phcu(qg� , g) and Phcs(qg� , g) ⊂
Phcs(pgj , g) for each j, �. On the other hand, by Lemma 5.1, there are j and �

such that Phc(pgj ) has positive measure and is contained mod 0 in Nuhi(g), and

Phc(qg� ) has positive measure and is contained mod 0 in Nuhk(g). By Theorem 4.10,
Phc(pgj ) = Phc(qg� ) mod 0. So Nuhi(g)∩Nuhk(g) has positive measure and therefore
k = i, as we wanted to show.

This completes the proof of Theorem A. �
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