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Abstract. We consider finite families of SL.2; R/ matrices whose products display uniform
exponential growth. These form open subsets of .SL.2; R//N , and we study their components,
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1. Introduction

Let � W E ! X be a vector bundle over a compact metric space X and let f W X ! X

be a homeomorphism defining a dynamical systems in X . A linear cocycle mover
f is a vector bundle map F W E ! E which is fibered over F . The most important
example occurs when X us a manifold, f is a diffeomorphism, E is the tangent
bundle TX , and F is the tangent map Tf . But it is very profitable to consider larger
classes of linear cocycles, allowing in particular to separate the base dynamics from
the fiber dynamics.

The most powerful tool in the study of linear cocycles is Oseledets’Multiplicative
Ergodic Theorem; see e.g. [1]. Given a probability measure on X which is invariant
and ergodic under the basic dynamics f , it allows to define Lyapunov exponents and
split accordingly the fiber Ex over almost all points of x. In this context, one says
that F is hyperbolic if none of the Lyapunov exponents is equal to zero.

There is a stronger notion of hyperbolicity, called uniform hyperbolicity, which
is of purely topological nature. One requires that E splits into a continuous direct
sum Es ˚ Eu, with both Es , Eu invariant under F , Es being contracted under F

and Eu contracted under F �1 (after suitable choices of norms on E).
The easiest non-commutative setting, and one of the most studied, is when E D

X �R2 is trivial and 2-dimensional, and F comes from a continuous map A W X !
SL.2; R/. In this case, one is led to consider the products

An.x/ WD
´

A.f n�1x/ : : : A.x/ for n � 0,

A.f nx/�1 : : : A.f �1x/�1 for n < 0.
(1)
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The case where X is a torus and f is an irrational rotation has attracted a lot of attention
in recent years, in particular in connection with the spectral properties of 1-d discrete
Schrödinger operators with quasiperiodic potential: see for instance [7], [8], [9] and
references therein. The values of the spectral parameter (energy) corresponding to
uniform hyperbolicity are those in the resolvent, and the Lyapunov exponent is the
main tool to study the spectrum.

The case where the base dynamics are chaotic is obviously also important. Starting
from the fundamental work of Furstenberg [10], control of Lyapunov exponents has
been obtained in several more general settings: see [12], [11], [5], [6].

In this work, we will consider, after [13], SL.2; R/-valued cocycles over chaotic
base dynamics from the point of view of uniform hyperbolicity. More precisely, N

will be an integer bigger than 1, and the base X D † � N Z will be a transitive
subshift of finite type (also called topological Markov chain), equipped with the
shift map � W † ! †. We will only consider cocycles defines by a map A W † !
SL.2; R/ depending only on the letter in position zero. The parameter space will be
therefore the product .SL.2; R//N . The parameters .A1; : : : ; AN / which correspond
to a uniformly hyperbolic cocycle form an open set H which is the object of our
study: we would like to describe its boundary, its connected components, and its
complement. Roughly speaking, we will see that this goal is attained for the full shift
on two symbols, and that new phenomena appear with at least 3 symbols which make
such a complete description much more difficult and complicated.

Let us now review the contents of the following sections.
Associated to a SL.2; R/-valued cocycle A W X ! SL.2; R/ over a base f W X !

X , we have a fibered map NA W X � P 1 ! X � P 1. The standard cone criterion says
that A is uniformly hyperbolic iff one can find an open interval I.x/ � P 1 depending
continuously on x such that A.x/I.x/ is compactly contained in I.f .x// for all
x 2 X . In our setting, A depends only on the zero coordinate x0 of x 2 † and we
would like for I.x/ to do the same. This is in general not possible but nevertheless
a result in this direction exists if one allows several components for I.x/, leading to
the notion of multicone. In the full shift case the result is as follows:

Theorem (Theorem 2.2). A parameter .A1; : : : ; AN / is uniformly hyperbolic (over
the full shift N Z) iff there exists a non-empty open set M ¤ P 1 with finitely many
components having disjoint closures which satisfies A˛M �M for 1 � ˛ � N .

There is a similar statement (Theorem 2.3) for general subshifts of finite type.
Section 3 is dedicated to the case where † is the full shift on two symbols. We

have a rather complete understanding of the hyperbolicity locus H in this case. The
simplest components of H are the 4 principal components; they consist of parameters
for which the multicone M in Theorem 2.2 is connected and are deduced from each
other by change of signs of the matrices. Next there are the so-called free compo-
nents of H (8 of them), consisting of parameters for which the multicone has two
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components. All the other non-principal components of H are obtained by taking
the preimage of one of the free components by a diffeomorphism of .SL.2; R//2

belonging to the free monoid generated by

FC.A; B/ D .A; AB/; F�.A; B/ D .BA; B/:

Moreover, any two distinct components of H have disjoint closures, and any compact
set in parameter space meets only finitely many components of H . In Subsection 3.8,
the combinatorics and dynamics of the multicones are described for each component
of H .

Recall that a matrix A 2 SL.2; R/ is said to be hyperbolic (resp. parabolic, resp.
elliptic) if j tr Aj > 2 (resp. j tr Aj D 2, resp. j tr Aj < 2). Denote by E the set of
parameters for which there exists a periodic point x 2 † (of period k) such that
Ak.x/ is elliptic. Obviously, E is an open set disjoint from H . Avila has proved that
for a general subshift of finite type, the closure of E is equal to the complement of
H . When † is the full shift on two symbols, we prove the stronger statement that E

and H have the same boundary, the complement of their union.
The main result of Section 4 is the following result (for general subshifts of finite

type):

Theorem (Theorem 4.1). Let .A1; : : : ; AN / belong to the boundary of a component
of H . Then one of the following possibilities hold:

� There exists a periodic point x of †, of period k, such that Ak.x/ is parabolic.

� There exist periodic points x, y of †, of respective periods k, `, an integer n � 0,
and a point z 2 W u

loc.x/ \ ��nW s
loc.y/ such that Ak.x/, A`.y/ are hyperbolic

and
An.z/u.Ak.x// D s.A`.y//:

We denote here by u.A/ or uA (resp. s.A/ or sA) the unstable (resp. stable) direction
of a hyperbolic matrix A. (When A is parabolic and A ¤ ˙id, we still write uA D sA

for the unique invariant direction.) The second case in the statement of the theorem
is called a heteroclinic connection. The integers k, `, n occurring in Theorem 4.1 are
actually bounded by a constant depending only on the component of H considered
in the statement. It follows easily that:

Corollary (Corollary 4.5). Every connected component of H is a semialgebraic set.

In the full-shift case, for parameters on the boundary of non-principal components,
no product of the matrices can be equal to˙id. The result we prove in Subsection 4.2,
together with similar results, is actually stronger.

In Subsections 4.5–4.7, we investigate what happens along parameter families
going through a heteroclinic connection. Starting with a single component of H
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(for the full shift on 3 symbols), it may happen that the complement of H [ E is
locally a smooth hypersurface; but it may also happen that the boundary of the starting
component is accumulated by a sequence of distinct components of H .

In Section 5, we consider from a purely combinatorial point of view the dynamics
on the components of the multicones for positive and negative iteration: this leads to
the concept of combinatorial multicones and monotone correspondences. Necessary
conditions on these objects to come from a matrix realization are introduced. It is
shown that these conditions are also sufficient in the case of the full-shift on two
symbols. An example is provided to show that the conditions are no longer sufficient
for full-shifts with more symbols.

Except for the case of the full-shift on two symbols, many questions are still open
and are discussed in Section 6.

In Annex A.1, a criterium characterizing relative compactness modulo conjugacy
in parameter space is proved: tr Ai and tr AiAj have to stay bounded.

There is one part of the study of the components of the hyperbolicity locus H which
is only briefly mentioned in this paper, and deserves further work: this is the group
vs monoid question. In the full shift case, a parameter .A1; : : : ; AN / is hyperbolic if
and only if matrices in the monoid generated by A1, …, AN grow exponentially with
word length. For certain components of H , but not all, it actually implies that the
matrices in the (free) group generated by A1, …, AN grow exponentially with word
length. For instance, for the full-shift on two symbols, this is true for non-principal
components, but not true for principal components. In a further paper we plan to
characterize which components have this property for the full-shift on 3 or more
symbols.

Acknowledgements. During the long preparation of this paper, we benefited from
support from CNPq (Brazil), CAPES (Brazil), CNRS (France), the Franco–Brazilian
cooperation agreement in Mathematics. This research was partially conducted during
the period A.A. served as a Clay Research Fellow. J. B. is partially supported by a
CNPq research grant. We thank Paula Porto for helping us with the figures.

2. Multicones

We recall the following result from [13], that says that uniform exponential growth
of the products in (1) guarantees uniform hyperbolicity:

Proposition 2.1. If f W X ! X is a homeomorphism of a compact space and
A W X ! SL.2; R/ is a continuous map, then the cocycle .T; A/ is uniformly hy-
perbolic iff there exist c > 0 and � > 1 such that kAn.x/k � c�n for all x 2 †,
n � 0.
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As explained in the Introduction, we consider a general transitive subshift of finite
type † � N Z, where N � 2. This means that there is a N �N matrix ."ij / of zeros
and ones so that † is formed by the sequences .xi /i2Z so that "xi xiC1

D 1 for every i ,
and the shift transformation restricted to † is transitive.

Given A1; A2; : : : ; AN 2 SL.2; R/, we consider the map .xi /i2Z 2 † 7! Ax0
2

SL.2; R/. If the associated cocycle is uniformly hyperbolic then we say that the
N -tuple .A1; : : : ; AN / is uniformly hyperbolic with respect to the subshift †.

If A 2 SL.2; R/, we also indicate by A the induced map P 1 ! P 1, where P 1 is
the projective space of R2.

Next we describe a geometric condition which is equivalent to uniform hyperbol-
icity of a N -tuple. Let us begin with full shifts:

Theorem 2.2. An N -tuple .A1; : : : ; AN / is uniformly hyperbolic w.r.t. the full shift
† D N Z iff there exists a nonempty open subset M � P 1 with SM ¤ P 1 such that1

A˛.M/ b M for every ˛ 2 f1; : : : ; N g. We can take M with finitely many connected
components, and those components with disjoint closures.2

A set M satisfying all the conditions in the theorem is called a multicone for .A˛/.

Now let † be any subshift of finite type. If ˛ and ˇ are symbols in the alphabet
f1; : : : ; N g, we write ˛ ! ˇ to indicate that the symbol ˛ can be followed by the
symbol ˇ. The generalization of Theorem 2.2 is:

Theorem 2.3. An N -tuple .A1; : : : ; AN / is uniformly hyperbolic w.r.t. † iff there are
non-empty open sets M˛ � P 1, one for each symbol ˛, with M˛ ¤ P 1, and such
that

˛ ! ˇ implies Aˇ .M˛/ b Mˇ :

Wecan take each M˛ with finitelymany connected components, and those components
with disjoint closures.

A family of sets .M˛/ satisfying all the conditions in the theorem is called a family
of multicones for the N -tuple .A˛/.

For any subshift of finite type † � N Z, we can define the dual subshift †� � N Z

as follows: if ˛ ! ˇ are the allowed transitions for †, then the allowed transitions
for †� are ˇ �!� ˛. If .A˛/ is a uniformly hyperbolic N -tuple w.r.t. †, with a family
of multicones .M˛/, then the N -tuple .A�1

˛ / is uniformly hyperbolic w.r.t. †�, with
family of multicones .M 0̨ / D .P 1 X A�1

˛ .M˛//.

1X b Y means that the closure xX of X is contained in the interior of Y .
2Added in proof: After this paper was completed, Bochi and Gourmelon [3] obtained generalizations of

Proposition 2.1 and Theorem 2.2 to arbitrary dimension, replacing uniform hyperbolicity by the existence of a
dominated splitting.
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Let us see that Theorem 2.2 is a corollary of Theorem 2.3: If .A˛/ is uniformly
hyperbolic, and M˛’s are given by Theorem 2.3, let M D S

˛ M˛ . Since A˛
SM �

M˛ ¤ P 1, we have SM ¤ P 1. Conversely, given a multicone M we simply take
M˛ DM for all ˛.

2.1. Examples. Let † D N Z be the full shift on N symbols. If the matrices A1, …,
AN have a common strictly invariant interval, then by Theorem 2.2 .A1; : : : ; AN / is
uniformly hyperbolic. Consider the set of such N -tuples; its connected components
are the principal components of the hyperbolic locus H . By Proposition 3 from [13],
such a component must contain some N -tuple of the form .˙A�; : : : ;˙A�/, where
tr A� > 2. Hence there are 2N principal components.

Let † D 2Z be the full shift on 2 symbols. For any m � 2, let us show that there
is a uniformly hyperbolic pair .A; B/ which has a multicone M with m components,
but no multicone with m� 1 components. Take any hyperbolic matrix A. Choose u,
s 2 P 1 such that

sA < u � Am�2u < s < Am�1u < uA < sA

(for some cyclical order on the circle P 1). Take a hyperbolic matrix B with uB D u,
sB D s. If the spectral radius of B is large enough, it is easy to see that .A; B/ has a
multicone M with m components containing respectively the points uB , A.uB/, …,
Am�2.uB/, uA. Figure 1 illustrates the case m D 4.

BA3

BA2

ABA2

ABA

A2BA

A2B

A3B

A B

Figure 1. Example of a uniformly hyperbolic pair .A; B/ and a multicone. Outer arrows indicate
the action of A and B in the components of the multicone. Inner arrows indicate stable and
unstable directions of A, B , and some of their products.
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The examples just described do not exhaust the possibilities for the full 2-shift.
See Figure 2 for a more complicate example. We postpone the description of this and
all other possible examples for † D 2Z to Section 3.

A B

BABAA

BA

ABABA

AB

AABAB

AAB

ABAAB

ABA

BAABA

BAA

Figure 2. Another example of a uniformly hyperbolic pair .A; B/.

Some examples of uniformly hyperbolic 3-tuples are indicated in Figure 3.

ACB

ABC

BAC

BCA

CBA

CAB

A

B

C

ACB

BAC

CBA

A

B

C

Figure 3. Two examples of uniformly hyperbolic 3-tuples .A; B; C /.

An example illustrating the situation of Theorem 2.3, is indicated in Figure 4.
(For another example, see §3.3, especially Figure 5.)
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A1

A2

A3

M1M2

M3

Figure 4. An example of a 3-tuple .A1; A2; A3/ that is uniformly hyperbolic with respect to the
subshift on the symbols 1, 2, 3 whose only forbidden transitions are 1! 2, 2! 3, and 3! 1.
The intervals M1, M2, M3 form a family of multicones.

2.2. Proof of the “if” part of Theorem 2.3. Let us first establish some notation to
be used from now on:

Given an ordered basis B D fv1; v2g of R2, we define a bijection PB W P 1 !
R[ f1g by P �1

B
.t/ D v1C tv2, P �1

B
.1/ D v2. The map PB is called a projective

chart.
If a, b, c, d are four distinct points in the extended real line R [ f1g then we

define their cross-ratio

Œa; b; c; d � D c � a

b � a
� d � b

d � c
2 R: (2)

If x, y, z, w are distinct points in the circle P 1, we take any projective chart
P W P 1 ! R [ f1g and define the cross-ratio

Œx; y; z; w� D ŒP.x/; P.y/; P.z/; P.w/�:

The definition is good because (2) is invariant under Möbius transformations. Of
course, for any A 2 SL.2; R/ we have Œx; y; z; w� D ŒA.x/; A.y/; A.z/; A.w/�.

A set I � P 1 is called an open interval if it is non-empty, open, connected, and its
complement contains more than one point. A set I � P 1 is called a closed interval
if either it consists of one point or is the complement of an open interval.

An open interval I can be endowed with the Hilbert metric dI , defined as follows:
If a, b are the endpoints of I then

dI .x; y/ D ˇ̌
logŒa; x; y; b�

ˇ̌
for all distinct x; y 2 I:

Recall the following properties of the Hilbert metric: If A 2 SL.2; R/ satisfies
A.I / D J then A takes dI to dJ . If J ¤ I are open intervals then the metric of J
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is greater than the metric of I . If, in addition, J b I then the metric of J is greater
than the metric of I by a factor at least �.I; J / > 1.

Proof of the “if” part of Theorem 2.3. For each symbol ˛, let d˛ be the Riemannian
metric on M˛ which coincides with the Hilbert metric in each of its components. Let
K˛ be the closure of the union of the sets A˛M� , where � ! ˛. We can assume that
K˛ intersects each connected component of M˛ , because otherwise we can take a
smaller M˛ . Let L˛ b M˛ be an open set containing K˛ and with the same number of
connected components as M˛ . Then each component M˛;i of M˛ contains a unique
component L˛;i of L˛ . Let � D min˛;i �.M˛;i ; L˛;i /.

Take an admissible sequence of symbols ˛0 ! ˛1 ! � � � ! ˛n, and let A D
A˛n

: : : A˛1
. If u, v belong to the same component of M˛0

then

d˛n
.Au; Av/ � ��nd˛0

.u; v/:

The metrics d˛jL˛ are comparable to the Euclidean metric d on P 1. So if u, v belong
to the same component of L˛0

we get d.Au; Av/ � C ��nd.u; v/, where C > 0 is
some constant. This in turn implies that kAk � C �1=2�n=2. By Proposition 2.1, we
are done. �

2.3. Proof of the “only if” part of Theorem 2.3. Assume the cocycle associated to
.A1; : : : ; AN / is uniformly hyperbolic. This means that there are continuous functions
es , eu W †! P 1 and constants C > 0, � > 1 such that for all x 2 †:

A.x/es.x/ D es.�x/I kAn.x/vk � C ��nkvk for all v 2 es.x/ and n � 0;

A.x/eu.x/ D eu.�x/I kA�n.x/vk � C ��nkvk for all v 2 eu.x/ and n � 0.

Moreover, es.x/ and eu.x/ are uniquely determined by those properties, and eu.x/ ¤
es.x/ for every x 2 †. Thus, for x D .xi /i2Z, eu.x/ depends only on .: : : ; x�2; x�1/,
while es.x/ depends only on .x0; x1; : : :/. (That is, eu, resp. es , is constant on local
unstable, resp. stable, manifolds.)

If ˛ is a symbol, we define the following two compact sets:

Ku
˛ D feu.x/I x�1 D ˛g; Ks

˛ D fes.x/I x0 D ˛g:
Notice that if ˛ ! ˇ then Ku

˛ \Ks
ˇ
D ¿. Also,

Ku
ˇ D

[
˛I ˛!ˇ

Aˇ Ku
˛ and Ks

˛ D
[

ˇ I ˛!ˇ

A�1
˛ Ks

ˇ :

So Ku
˛ \ A˛Ks

˛ D ¿.
Let us now define two families of sets U˛ and S˛ , called the unstable and stable

families of cores of .A1; : : : ; AN / as follows:
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� U˛ is the complement of the union of the connected components of P 1 X Ku
˛

that intersect A˛Ks
˛;

� S˛ is the complement of the union of the connected components of P 1 X Ks
˛

that intersect A�1
˛ Ku

˛ .

It is straightforward to check that the families of cores satisfy the following prop-
erties:

(i) U˛ , S˛ are non-empty compact sets with finitely many connected components;

(ii) U˛ \ A˛S˛ D ¿;

(iii) every connected component of P 1XA˛S˛ , resp. P 1XA�1
˛ U˛ , contains a unique

connected component of U˛ , resp. S˛;

(iv) Uˇ �
[

˛I ˛!ˇ

Aˇ U˛ and S˛ �
[

ˇ I ˛!ˇ

A�1
˛ Sˇ .

It follows from these conditions that each U˛ has the same number k.˛/ of connected
components as S˛ . We define the rank of the families as the integer

P
˛ k.˛/.

Lemma 2.4. Let .A1; : : : ; AN / 2 SL.2; R/N . Assume that there exist two families
of sets U˛ and S˛ (where ˛ runs on the symbols) satisfying properties (i)–(iv) above,
and with rank n0. Assume also that for every periodic point x 2 † of period n � n0,
the corresponding matrix product An.x/ is not˙id. Then .A1; : : : ; AN / has a family
of multicones .M˛/. Moreover, U˛ � M˛ b P 1 X A˛S˛ , and each connected
component of P 1 X A˛S˛ contains a unique connected component of M˛ .

Clearly, Lemma 2.4 implies the “only if” part of Theorem 2.3. The reason why we
stated Lemma 2.4 in this generality is that it gives a criterion for uniform hyperbolicity
which will be useful in some other occasions.

Proof of Lemma 2.4. Let V˛ D P 1 X A˛S˛ . Write each V˛ as a disjoint union
of open intervals V˛;1 t � � � t V˛;k.˛/, and write U˛ D U˛;1 t � � � t U˛;k.˛/ with
U˛;i D U˛ \ V˛;i .

Define a Riemannian metric d˛ on V˛ by taking on each component of V˛ the
corresponding Hilbert metric. For " > 0, let U˛;i ."/ denote an "-neighborhood of
U˛;i with respect to d˛ . Also let U˛."/ D Sk.˛/

iD1 U˛;i ."/. Notice that if ˛ ! ˇ then
Aˇ � V˛ � Vˇ and hence Aˇ � U˛."/ � Uˇ ."/.

Let x 2 † be such that x�1 D xn�1 D ˛ for some n with 1 � n � n0. Assume
that An.x/ �V˛;i � V˛;i for some i (or, equivalently, An.x/ �U˛;i � U˛;i ). We claim
that then An.x/ � U˛;i ."/ b U˛;i ."/, for any " > 0. Indeed, the matrix B D An.x/

is not ˙id, by assumption, nor elliptic, because it leaves the interval V˛;i invariant.
Therefore u.B/ and s.B/ are defined. We have u.B/ 2 U˛;i and s.B/ … V˛;i ,
so s.B/ … U˛;i ."/. Therefore B is hyperbolic and its restriction to U˛;i ."/ strictly
contracts the metric d˛ . This proves the claim.
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From now on fix some arbitrary "0 > 0. By compactness, there exists a positive
"00 < "0 such that if x 2 † and 1 � n � n0 are such that x�1 D xn�1 D ˛ and
An.x/ � V˛;i � V˛;i for some ˛ and i , then An.x/ � U˛;i ."

0/ � U˛;i ."
00/.

For n � 0, let

U n
˛ ."/ D

[
x2†I xn�1D˛

An.x/ � Ux�1
."/:

Notice that U k
˛ .ı/ � U n

˛ ."/ if ı � " and k � n, and also that Aˇ U n
˛ ."/ � U nC1

ˇ
."/

if ˛ ! ˇ.
We claim that U

n0
˛ ."0/ � U˛."00/ for any ˛. Indeed, take x 2 † with xn0�1 D ˛

and v 2 Ux�1
."0/. By the definition of the rank n0, there exist 0 � k < ` � n0 such

that xk�1 D x`�1 and moreover Ak.x/ �v and A`.x/ �v belong to the same connected
component of Uxk�1

."0/, say Uxk�1;i ."
0/. Then

A`.x/ � v 2 A`�k.�kx/ � Uxk�1;i ."
0/ � Ux`�1;i ."

00/;

and so An0.x/ � v 2 U˛."00/, proving the claim.
At last, take a sequence "00 D "0 < "1 < � � � < "n0

D "0 and let

M˛ D
n0�1[
nD0

U n
˛ ."nC1/;

for each ˛. If ˛ ! ˇ then

Aˇ M˛ �
n0�1[
nD0

U nC1
ˇ

."nC1/ �
n0�1[
nD0

U n
ˇ ."n/ b Mˇ :

So the family of sets M˛ has the required properties. �

2.4. The case of full shifts. Here we will give some additional information about
multicones in the specific case of the full shift † D N Z, which interests us most.
In that case, a characterization of uniform hyperbolicity becomes simpler, involving
a single multicone (cf. Theorem 2.2), instead of a family of multicones (cf. Theo-
rem 2.3).

2.4.1. Multicones. Given a uniformly hyperbolic N -tuple .A1; : : : ; AN /, let eu,
es W N Z ! P 1 be the same maps as in §2.3, and let Ku, Ks � P 1 be their
respective images. Notice that these sets are disjoint, Ku D S

˛ A˛.Ku/, and
Ks DS

˛ A�1
˛ .Ks/.
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These sets relate with multicones in the following way: If M is any multicone for
.A1; : : : ; AN / then

Ku D
1\

nD0

[
i1;:::;in

Ain : : : Ai1.M/; Ks D
1\

nD0

[
i1;:::;in

.Ain : : : Ai1/�1
�
P 1 X SM �

:

The proof is left to the reader.
Another fact that is worth to mention is:

Proposition 2.5. Assume that M is a multicone for a uniformly hyperbolic N -tuple
.A1; : : : ; AN /. Then there exists k such that every product of Ai ’s of length � k

sends M into a single connected component of M .

Proof. Fix a multicone M for .A1; : : : ; AN /. We have Ku �M and Ks � P 1X SM .
In particular, there is " > 0 such that the 2"-neighborhood of Ku (resp. Ks) is
contained in M (resp. P 1 X SM ). There is c D c."/ > 1 such that if B 2 SL.2; R/ is
hyperbolic, the distance between uB and sB is at least 4", and kBk > c then B sends
the complement of the "-neighborhood of sB into the "-neighborhood of uB . Let k

be such that every product of Ai ’s of length � k has norm at least c. Then we are
done. �

2.4.2. Cores. As already mentioned, Theorem 2.2 is a corollary of Theorem 2.3.
Nevertheless, it is worthwhile to see how the proof in §2.3 could be simplified.

Given the hyperbolic N -tuple .A1; : : : ; AN /, let Ku, Ks � P 1 be as above.
Define other sets U and S as follows:

� U is the complement of the union of the connected components of P 1XKu that
intersect Ks;

� S is the complement of the union of the connected components of P 1XKs that
intersect Ku.

The set U , resp. S , is called the unstable, resp. stable, core of .A1; : : : ; AN /. The
following properties are easily checked:

(i) U , S are non-empty compact sets with finitely many components;
(ii) U and S are disjoint, and moreover each connected component of P 1XS , resp.

P 1 X U , contains a unique connected component of U , resp. S ;
(iii) Ai .U / � U and A�1

i .S/ � S for every symbol i .

It follows from these conditions that the sets U and S have the same number of
connected components; call this number the rank of the sets.

Remark 2.6. The relation between the cores U , S and the families of cores U˛ , S˛

considered before is simple: P 1 X U is the union of the connected components of
P 1 XS

U˛ that meet
S

S˛ , and analogously for S . In particular, U contains
S

U˛

and that @U is contained in
S

@U˛ .
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The following is a criterium for uniform hyperbolicity (specific for the full shift):

Lemma 2.7. Let .A1; : : : ; AN / 2 SL.2; R/N . Assume that there exist sets U , S �
P 1 satisfying properties (i)–(iii) above. Assume also that for every string of Ai ’s of
length less of equal to the rank of the sets, the product is different from ˙id. Then
.A1; : : : ; AN / has a multicone M . Moreover, U � M b P 1 X S , each connected
component of P 1 X S contains a unique connected component of M .

The proof of Lemma 2.7 is merely a simplification of the proof of Lemma 2.4,
and will be left to the reader. Of course, using Lemma 2.7 one can give a direct proof
of the “only if” part of Theorem 2.2.

2.4.3. Tightness. A multicone M for the N -tuple .A1; : : : AN / will be called tight
if the following two conditions hold:

� the set
S

i Ai .M/ intersects every connected component of M ;
� the set

S
i A�1

i

�
P 1 X SM �

intersects every connected component of P 1 X SM .

(Notice that no condition implies the other.)
Tightness has a simple reformulation in terms of the cores:

Proposition 2.8. Amulticone M is tight iff every connected component of M contains
a unique connected component of U and every connected component of P 1 X SM
contains a unique connected component of S .

Proof. Fixed a uniformly hyperbolic N -tuple, let Ku, Ks , U , S be as before. Let M

be a multicone, and let M � D P 1 X SM .
First, let us prove the “if” part: Assume every connected component of M (resp.

M �) intersects U (resp. S ). Since Ku � U , each component of M intersects Ku.
Now, each point in Ku is the image of another point in Ku (and hence in M ) by some
Ai . So each component of M intersects some Ai .M/. With a symmetric argument
for M � and S we conclude that M is tight.

Now let us prove the “only if” part of the proposition. Assume that the multicone
M is tight. To conclude, it is sufficient to show that every connected component of
M intersects Ku, and that every connected component of M � intersects Ks . In fact,
by symmetry, we only need to prove the first claim.

Fix a connected component of M , say, M0. By the first condition in the definition
of tightness, there exists a connected component M1 of M such that Ai1.M1/ �M0

for some i1. Continuing by induction, define components Mn and indices in for all
n � 1 so that AinC1

.MnC1/ � Mn. The number of connected components is finite,
so let k � 1 be the least index such that Mk D M` for some ` < k. The interval
M` is forward-invariant by Ai`C1

: : : Aik�1
Aik , so it contains the unstable direction

of that product. So M` intersects Ku. The interval M0 contains Ai1Ai2 : : : Ai`.M`/,
hence it intersects Ku as well. This concludes the proof. �
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Remark 2.9. It follows from Proposition 2.8 that a multicone for a uniformly hyper-
bolic N -tuple .A1; : : : ; AN / is tight iff there is no multicone with a smaller number
of connected components.

3. The full 2-shift case

3.1. Statements. Before going into other general results, we study the simplest case:
the full shift on two symbols. So in this section we let † D 2Z and let H � SL.2; R/2

denote the associated hyperbolicity locus.
By definition, a connected component of H is called principal if every pair in it

has a multicone consisting of a single interval. Recall from §2.1 that there are four
such components. Let H0 indicate their union.

The next simplest case is when a tight multicone consists on two intervals. So
let Hid � SL.2; R/2 denote the (open) set of pairs .A; B/ that do not belong to a
principal component, and have a multicone M which is a union of two intervals.

(See Figure 5 for an example of .A; B/ 2 Hid; M D I1 [ I2 is a multicone.)
In fact (see Proposition 3.4), we have

Hid D f.A; B/ 2 SL.2; R/2I j tr Aj > 2; j tr Bj > 2;

j tr ABj > 2; tr A tr B tr AB < 0g;
and moreover, Hid has eight connected components. Let us call these as the free
components of H .

Define mappings FC; F� W SL.2; R/2 ! SL.2; R/2 by

FC.A; B/ D .A; AB/ and F�.A; B/ D .BA; B/:

These are diffeomorphisms of SL.2; R/2. Let M be the monoid3 generated by FC
and F�.

Theorem 3.1 (Connected components of H ). Every connected component of H is
one of the following:

� either a principal component;
� or F �1.H/ for some free component H � Hid � H and some F 2M.

Moreover, such components are distinct.

Theorem3.2 (Boundary of H ). Acompact subset of SL.2; R/2 intersects only finitely
many components of H .

The boundary of H is the disjoint union of the boundaries of its components.
Moreover, if .A; B/ 2 @H then (at least) one of the following holds:

3semigroup with identity
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(i) there is a product of A’s and B’s which is parabolic; or

(ii) uA D sB or uB D sA.

The second possibility can only occur if .A; B/ belongs to the boundary of a principal
component.

Let E � SL.2; R/2 be the set of pairs .A; B/ such that there exists a product of
A’s and B’s which is elliptic. Of course, E is an open set, disjoint from H . In fact,
E is the complement of H , as a consequence of the following result:

Theorem 3.3 (Relation between H and E). @H D @E D .H t E/c .

We are also able to give a precise description of the multicones for all components
of H , see §3.8.

The results above answer all questions of [13] for the full 2-shift. (Namely, the
answers are 1: yes, 10: no, 2: no, 3, 30, 4: yes.) The solution of Problem 1 can also
be given using the description of §3.8.

The proofs of Theorems 3.1, 3.2, and 3.3 occupy the following subsections.

3.2. Plan of proof. First, let us prove the assertions already made about Hid:

Proposition 3.4. We have

Hid D f.A; B/ 2 SL.2; R/2I j tr Aj > 2; j tr Bj > 2;

j tr ABj > 2; tr A tr B tr AB < 0g: (3)

The set Hid has eight connected components, and these components have disjoint
boundaries.

The subset of Hid given by

f.A; B/I tr A > 2; tr B > 2; tr AB < �2g (4)

has two connected components, which are conjugated by an orientation-reversing
automorphism of P 1. Fixed a cyclical order on P 1, we have in one of the two
components that

uB < uBA < sBA < sA < uA < uAB < sAB < sB < uB : (5)

The component of the set in (4) where (5) holds is called the positive free compo-
nent. (Of course this definition depends on the choice of an orientation in P 1.)

Proof. If .A; B/ 2 Hid then modulo sign changes (which do not affect being in either
side of (3)) we can assume that tr A, tr B > 2. The fact that .A; B/ does not belong
to a principal component implies that uB < sA < uA < sB < uB for some cyclical
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order on P 1. Let M be the multicone for the pair .A; B/; write it as union of two
intervals M D I [J . Then one of the intervals, say I , must contain uA and the other,
uB . So uAB is contained in I , and, as it is easy to see, the associated eigenvalue of
AB is negative. This shows that tr AB < �2 so .A; B/ belongs to the right-hand
side of (3).

On the other hand, Proposition 5 in [13] and its proof show that the set in (4)
has two connected components with the stated properties. The proof also shows that
pairs .A; B/ in that set have a multicone consisting in two intervals. Of course, if
uB < sA < uA < sB < uB for some cyclical order on P 1 then .A; B/ cannot be in
a principal component of H . So the set in (4) is contained in Hid. We conclude that
the set in the right-hand side of (3) is also contained in Hid and has eight connected
components.

To prove that the connected components of Hid have disjoint boundaries, it suffices
to see that the two components of the set (4) have disjoint boundaries. So assume
.A; B/ is a boundary point of both components. Then uB D sA D uA D sB . So
tr A D tr B D 2, and this implies tr AB D 2, a contradiction. �

Given F 2M, let us denote HF D F �1.Hid/. Our plan to prove the main results
is as follows. In §3.3–3.4 we will show:

Proposition 3.5. For any F 2M, HF � H .

Then in §3.5–3.6 we will prove:

Proposition 3.6. SL.2; R/2 is the disjoint union of E , H0, and
F

F 2M HF . More-
over, a compact set in SL.2; R/2 intersects only finitely many of the sets HF .

Putting things together, we will prove Theorems 3.1, 3.2, and 3.3 in §3.7.
In §3.8 we will give an alternative proof of Proposition 3.5, by describing explicitly

the multicones.

3.3. Group-hyperbolic pairs. Let .A; B/ 2 SL.2; R/2 be given. Let † � 4Z be
the (transitive) subshift of finite type where the only forbidden transitions are 1! 3,
3! 1, 2! 4, and 4! 2. Take the 4-tuple .A1; A2; A3; A4/ D .A; B; A�1; B�1/,
and consider the usual cocycle map over the subshift. If this cocycle is uniformly
hyperbolic, then we will say the pair .A; B/ is group-hyperbolic.

Lemma 3.7. If .A; B/ belongs to a free component then .A; B/ is group-hyperbolic.

Proof. Without loss, we assume that .A; B/ belongs to the positive free component
(so (5) holds). Take four disjoint (open) intervals I1, I2, I3, I4 such that I1 [ I2 is
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a multicone for .A; B/ (over the full 2-shift), I3 [ I4 is a multicone for .A�1; B�1/

(over the full 2-shift), and

I1 � ŒuA; uAB �; I4 � ŒsAB ; sB �; I2 � ŒuB ; uBA�; I3 � ŒsBA; sA�:

A B

AB

BA

I2I3

I1
I4

Figure 5. Group-hyperbolicity of the free component.

Since A.I1/, A.I2/ b I1, we see that A.I4/ b I1 as well. In the same manner,
we have

A.I1 [ I4 [ I2/ b I1; B.I2 [ I3 [ I1/ b I2;

A�1.I3 [ I2 [ I4/ b I3; B�1.I4 [ I1 [ I3/ b I4:

So Theorem 2.3 applies, and our cocycle over the subshift † � 4Z is uniformly
hyperbolic. That is, .A; B/ is group-hyperbolic. �

3.4. Length comparison. Let F2 be the free group in two generators a, b. Let j � j
be the usual length function on F2, relative to the generators a, b. Let fC, f� be the
homomorphisms of F2 such that fC.a/ D a, fC.b/ D ab, f�.a/ D ba, f�.b/ D b.
Notice jf˙.!/j � 2j!j for all ! 2 F2. Since fC and f� are in fact automorphisms,
it follows that jf �1˙ .!/j � 1

2
j!j for all ! 2 F2.

Given .A; B/ 2 SL.2; R/2, there is a unique homomorphism h �; .A; B/i W F2 !
SL.2; R/ such that ha; .A; B/i D A and hb; .A; B/i D B . In fact, this gives a
bijection between SL.2; R/2 and the set of homomorphisms F2 ! SL.2; R/.

If f W F2 ! F2 is a homomorphism then there is a unique map f � W SL.2; R/2 !
SL.2; R/2 such that hf .!/; .A; B/i D h!; f �.A; B/i. The functorial properties
id� D id and .g B f /� D f � B g� hold. Also notice that f �C D FC and f �� D F� .

Proof of Proposition 3.5. Let .A; B/ 2 HF , where F D F"k
B� � �BF"1

, "i 2 fC;�g.
Let .A0; B0/ D F.A; B/ 2 Hid. By Lemma 3.7, .A0; B0/ is group-hyperbolic. This
means that there exist c, � > 0 such that for every ! 2 F2,

kh!; .A0; B0/ik � c exp.� j!j/:
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Let f D f"1
B � � � B f"k

, so f � D F . For any ! 2 F2, we have

kh!; .A; B/ik D khf �1.!/; .A0; B0/ik � c exp
�
� jf �1.!/j� � c exp

�
2�k� j!j�:

This proves that .A; B/ is group-hyperbolic and, in particular, .A; B/ is a uniformly
hyperbolic pair w.r.t. the full 2-shift. �

3.5. Twisted pairs. Let us say that .A; B/ 2 SL.2; R/2 is straight if .A; B/ 2 H0,
that is, .A; B/ belongs to the closure of a principal component.

Notice that if .A; B/ is straight then so are FC.A; B/ and F�.A; B/.
It is easy to see that if there is an open interval which is forward-invariant for both

A and B then .A; B/ is straight. The converse is not true: for example, if A ¤ ˙id
is parabolic then .A; A�1/ is straight, but there is no invariant open interval.

Let us say that a pair .A; B/ is twisted if A and B are not elliptic and .A; B/ is
not straight.

Let A be non-elliptic, and A ¤ ˙id, so uA, sA 2 P 1 are defined. Assume that
an orientation is fixed in P 1. Given p 2 P 1, we shall write p < uA . sA < p to
indicate that p < Ap < uA � sA < p. This means that there exist QA arbitrarily close
(possibly equal) to A such that p < u QA < s QA < p. In the case A is parabolic we can
define uA . sA without mentioning a point p.

Lemma 3.8. Let A, B 2 SL.2; R/ be non-elliptic. Then .A; B/ is twisted iff A,
B ¤ ˙id and for some cyclical order on P 1 we have

uA < sB . uB < sA . uA: (6)

Proof. If A or B equals ˙id, then .A; B/ is easily seen to be straight. So we can
assume A, B ¤ ˙id.

The rest of the proof is merely a case-by-case inspection. The following list
exhausts all possible (mutually exclusive) cases, modulo inverting the cyclical order
on P 1, or interchanging A and B , or replacing .A; B/ by .A�1; B�1/:

1. A and B are hyperbolic:

1.1. uA D uB or uA D sB ,

1.2. uA < uB < sB < sA < uA,

1.3. uA < uB < sA < sB < uA,

1.4. uA < sB < uB < sA < uA.

2. A hyperbolic and B parabolic:

2.1. uA D uB ,

2.2. uA < uB . sB < sA < uA,
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2.3. uA < sB . uB < sA < uA.

3. A and B parabolic:

3.1. uA D uB with uA . sA and sB . uB ,

3.2. uA D uB with uA . sA and uB . sB ,

3.3. uA ¤ uB with uA . sA and sB . uB ,

3.4. uA ¤ uB with uA . sA and uB . sB :

The cases 1.1, 1.2, 1.3, 2.1, 2.2, 3.2, and 3.3 are those where there is an invariant
open interval, and hence are straight. In the case 3.1, there is no invariant open
interval, but it is straight nevertheless. The remaining cases, 1.4, 2.3, and 3.4 are
precisely those where condition (6) holds; and none of them can be straight. �

Lemma 3.9. Let .A; B/ satisfy tr A; tr B � 2. Then .A; B/ is twisted iff there exists
a basis (called canonical basis for .A; B/) where A, B are written as

A D
�

� ˛

0 ��1

�
; B D

�
	�1 0

ˇ 	

�
; (7)

with � � 1, 	 � 1 and ˛ˇ < 0. Moreover, � 	 ˛ˇ only depends on .A; B/ and not
on the choice of the canonical basis.

Proof. Let .A; B/ be such that tr A, tr B > 2. Introduce coordinates so that uA D
R.1; 0/ and uB D R.0; 1/. Then A and B are in the form (7), with �, 	 > 1. Write
the other eigendirections as sA D R.x; 1/ and sB D R.1; y/. We have

x D �˛

� � ��1
; y D �ˇ

	 � 	�1
:

Then (6) holds iff xy < 0, that is, iff ˛ˇ < 0.
We leave the cases where A or B is parabolic as exercises to the reader.
For the last remark, notice that ˛ˇ is a function of tr A, tr B , and tr AB . �

Let us say that .A; B/ is free if

j tr Aj, j tr Bj, j tr ABj � 2, and tr A tr B tr AB < 0.

Lemma 3.10. Every free pair is twisted. A pair .A; B/ is free iff it belongs to Hid.

Proof. If .A; B/ is straight then, replacing A by �A or B by �B if necessary, we
have tr A, tr B , tr AB � 2, so .A; B/ cannot be free.

If .A; B/ is free, say with tr A, tr B � 2, and tr AB � �2, then using a canonical
basis we see that there exist . QA; zB/ arbitrarily close to .A; B/ such that tr QA, tr zB > 2,
and tr QA zB < �2. �
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Lemma 3.11. Let .A; B/ be twisted. Then exactly one of the following holds:

(i) .A; AB/ is twisted.

(ii) .BA; B/ is twisted.

(iii) .A; B/ is free.

(iv) AB is elliptic.

Proof. If (iv) holds then clearly (i), (ii), and (iii) do not hold. It follows from Propo-
sition 3.4 and Lemma 3.10 that if (iii) holds then (i) and (ii) do not hold. Thus we
only have to prove that if .A; B/ is twisted and not free and if AB is not elliptic then
either (i) or (ii) holds.

We can assume that tr A, tr B � 2. Then tr AB � 2. By taking a canonical
basis for .A; B/, we may assume that the expressions (7) hold, where we may choose
˛ > 0 and ˇ < 0. Notice that with that basis uA corresponds to .1; 0/ and uB to
.0; 1/. Let us orient P 1 so that .1; 0/ < .1; y/ < .0; 1/ if y > 0. For this cyclical
order, (6) holds. It is easy to see that AB ¤ ˙id.

Assume that tr A D 2. Then tr B > 2, otherwise we would have tr AB < 2.
First, let us locate the fixed points of the projective action of AB . It is easy to see
that there is no fixed point in ŒuB ; uA� . If there were a fixed point of AB in ŒuA; sB �

then the associated eigenvalue would be negative, contradicting tr AB � 2. So uAB ,
sAB 2 .sB ; uB/. It easily follows that

uA < sAB . uAB < sA . uA;

and so, by Lemma 3.8, .A; AB/ is twisted. We have uBA D BuAB , sBA D BsAB 2
.sB ; uB/. Notice that .uBA; uB/ is an invariant interval for .BA; B/ so that .BA; B/

is straight. This shows that the lemma holds if tr A D 2. The same argument gives
the case tr B D 2.

We assume from now on that tr A, tr B > 2. In this case we have uA < sB <

uB < sA < uA.
Let us locate the eigendirections of AB . None can belong to fuA; uB ; sA; sBg.

It is immediate that AB cannot have a fixed point in the interval .uB ; sA/. Neither
can AB have a fixed point in .uA; sB/, because otherwise the associated eigenvalue
would be negative, contrary to the assumptions. So each eigendirection of AB must
be in one of the intervals .sA; uA/ and .sB ; uB/.

Consider the case that uAB belongs to .sB ; uB/. Observe that BA sends sB into
the interval .uB ; sB/. It follows that sAB also belongs to .sB ; uB/, and also

uA < sAB . uAB < sA < uA:

So .A; AB/ is twisted, by Lemma 3.8. The points uBA D BuAB and sBA D BsAB

also belong to .sB ; uB/. The interval .uBA; uB/ is invariant for BA and B , so .BA; B/

is straight.
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In the case that uAB belongs to .sA; uA/, then uBA D A�1uAB also belongs to the
same interval. It follows as in the last case (interchanging the roles of A and B) that
.BA; B/ is twisted and .A; AB/ is straight. �

3.6. Dynamics of the monoid. Let I.A; B/ D .tr A; tr B; tr AB/ and let


C.x; y; z/ D .x; z; xz � y/;


�.x; y; z/ D .z; y; yz � x/;

j.x; y; z/ D x2 C y2 C z2 � xyz:

Proposition 3.12. We have I B F˙ D 
˙ B I and j B 
˙ D j .

Proof. The first assertion follows from the identity tr A2B D tr A tr AB � tr B . The
second one is straightforward. �

Let J D j B I .
Let .A; B/ be twisted with tr A � 2 and tr B � 2, so that in a canonical basis

A D
�

� ˛

0 ��1

�
; B D

�
	�1 0

ˇ 	

�
;

with � � 1, 	 � 1 and � 	 ˛ˇ < 0. Then tr AB D �	�1 C ��1	 C � . Thus

tr AB � max.tr A; tr B/C � < max.tr A; tr B/: (8)

Moreover, we have

J.A; B/ D 4C �2 � �.� � ��1/.	 � 	�1/ > 4:

Let us say that .A; B/ is almost hyperbolic if F.A; B/ is a pair of non-elliptic
matrices for every F 2 M. The following is the key fact we need about the action
of F :

Lemma 3.13. Let .A; B/ be almost hyperbolic and twisted. Then there exists a
unique F 2M such that the pair F.A; B/ is free. Moreover, the length of F in terms
of the generators FC, F� is � 1

4
.j tr Aj C j tr Bj/ � 1.

Proof. We may assume that tr A � 2 and tr B � 2. Let .A0; B0/ D .A; B/. Assume
that it was defined an almost hyperbolic and twisted pair .Ak; Bk/, for some k > 0.
Then, by Lemma 3.11, there are 3 possibilities:

either FC.Ak; Bk/ is twisted, or F�.Ak; Bk/ is twisted, or .Ak; Bk/ is free. (9)

In the first, resp. second, alternative we set "k DC, resp. "k D�, and .AkC1; BkC1/D
F"k

.Ak; Bk/.
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We claim that the third alternative in (9) holds for some k > 0. If not, we have
an (infinite) sequence of twisted pairs .Ak; Bk/. Then tr Ak � 2 and tr Bk � 2 for
all k � 0. In a canonical basis we have

Ak D
�

�k ˛k

0 ��1
k

�
; Bk D

�
	�1

k
0

ˇk 	k

�
:

Define sequences

Mk D max.tr Ak; tr Bk/; mk D min.tr Ak; tr Bk/; and tk D tr Ak C tr Bk :

Since .Ak; Bk/ is twisted, �k D ˛kˇk < 0. So, by (8), fMkg is non-increasing.
Let also

�k D tkC1 � 2tk C tk�1; k > 0:

Using Proposition 3.12, one easily checks that

�k D

8̂<
:̂

.tr Ak � 2/ tr Bk if ."k; "kC1/ D .C;C/,

.tr Bk � 2/ tr Ak if ."k; "kC1/ D .�;�/,

tr Ak tr Bk � tr Ak � tr Bk if ."k; "kC1/ D .�;C/ or .C;�/.

(10)

In particular, �k � .mk � 2/Mk � 0, so the function k 7! tk is convex. Since
4 � tk � 2M0, we conclude that ftkg is non-increasing and �k ! 0 (indeedP

�k <1). It follows that lim mk D 2. The proof now splits in two cases:

First case: lim Mk > 2. Assume lim tr Ak D 2 and lim tr Bk > 2 (the other
possibility being analogous). We get from (10) that "k D C for all k big enough.
Thus AkC1 D Ak for all big k and tr Ak D 2 for big k. So �k D 0 for big k. Since
ftkg is bounded we have, for all big k, that tkC1 D tk and hence tr BkC1 D tr Bk .
But tr BkC1 D tr Bk C �k < tr Bk for big k, contradiction.

Second case: lim Mk D 2. Then tr Ak , tr Bk , tr AkBk ! 2, so J.Ak; Bk/! 4.
This contradicts J.Ak; Bk/ D J.A; B/ > 4.

We conclude that the third alternative in (9) holds for some k D N , say. That is,
if F D F"N �1

B � � � B F"0
then F.A; B/ is free. Such F 2 M is unique. Indeed, if

0 � j < N and ı ¤ "j then Fı BF"j �1
B� � �BF"0

.A; B/ is straight. (This follows from
uniqueness in Lemma 3.11.) And FC.F.A; B// and F�.F.A; B// are also straight.

To complete the proof, we have to bound N . Since tr AN , tr BN � 2, and
tr AN BN � �2, we have tN C1 � tN � �4. For 1 � k � N we have �k � 0 and so
tk � tk�1 � �4. Thus t0 � 4N C tN � 4N C 4, so N � 1

4
t0 � 1, as claimed. �

Now we can give the

Proof of Proposition 3.6. First, H0 \Hid D ¿, and since F
�
H0

� � H0, we have
H0 \HF D ¿ for any F 2M. By Proposition 3.5, we have

H0 t
[

F 2M

HF � H � Ec :
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On the other hand, let .A; B/ 2 Ec . If the pair .A; B/ is straight, then it belongs to
H0. If it is not, then it is twisted and almost hyperbolic. So Lemma 3.13 gives that
there exists F 2 M such that .A; B/ 2 HF . Moreover, F is unique. This shows
that the sets HF are disjoint, so the first assertion in the proposition is proved. The
second one follows from the length estimate in Lemma 3.13. �

3.7. Conclusion of the proofs

Proof of Theorems 3.1, 3.2, and 3.3. First let us see that

H D H0 t
G

F 2M

HF : (11)

The� inclusion follows from Proposition 3.5. To show the other inclusion, it suffices,
by Proposition 3.6, to show that @H0, @HF � H c for all F 2M.

The boundary of H0 is described by Proposition 4 in [13]: if .A; B/ belongs to
it then either A is parabolic or B is parabolic or uA D sB or uB D sA. In any case,
.A; B/ 2 H c .

By definition of Hid, if .A; B/ belongs to its boundary then at least one of A, B ,
or AB is parabolic. It follows that if .A; B/ 2 @HF then there is a product of A’s
and B’s which is parabolic. In particular, .A; B/ 2 H c .

We have proved equality (11) and hence Theorem 3.1.
Notice that the four principal components have disjoint boundaries, and so do the

eight free components (this follows easily from Proposition 3.4.) So, by Proposi-
tion 3.6, the boundaries of the components of H are disjoint, and a compact set in
SL.2; R/2 intersects only a finite number of components. It follows that the union of
those boundaries gives all of @H . This completes the proof of Theorem 3.2.

We have also shown that SL.2; R/2 D E t H . To complete the proof of The-
orem 3.3, it suffices to show that H c � xE . That is an immediate consequence of
Lemma 2 from [13]. �

Remark 3.14. Our proof of Theorem 3.1 also gave an algorithm to decide whether
a pair .A; B/ 2 SL.2; R/2 is uniformly hyperbolic or not (w.r.t. the full 2-shift).
Namely: first, check if both A and B are hyperbolic; second, compute eigendirections
of A, B to see if the pair belongs to a principal component; third, repeat the first step
for all pairs F"k

B � � � B F"1
.A; B/, with k � 1

2
maxfj tr Aj; j tr Bjg � 1. (By the way,

this third step can be done without actually computing matrix products, if we use
Proposition 3.12 instead.) The algorithm ends in “finite time”; moreover, given an
upper bound for the size of the matrices, an upper bound for the “running time” of the
algorithm can be given explicitly. An example of §4.7 (see Proposition 4.18) shows
that the situation for the full 3-shift is much more complicated.
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3.8. Description of the multicones. Here we will give another proof of Proposi-
tion 3.5, and also obtain an explicit description of the multicones for the twisted
hyperbolic components.

3.8.1. Let M� be the monoid on the generators FC, F� operating on words in A, B

by the substitutions

FC W A 7! A; B 7! AB;

F� W A 7! BA; B 7! B:

(The monoid M� is opposite to the previously introduced M.) We identify M� with
Q \ .0; 1/ via the canonical bijection j : for F 2 M�, j.F / D p=q if F.AB/ has
length q and contains p times the letter B . We have j.idM�/ D 1=2.

3.8.2. For F 2M�, with j.F / D p=q, denote by O.p=q/ the set of words of length
q deduced from F.AB/ by cyclic permutation. This set can also be described in
the following way: consider the map Rp=q W Œ0; 1/ ! Œ0; 1/, x 7! x C p=q mod 1;
set �.x/ D A if x 2 Œ0; 1 � p=q/ and �.x/ D B if x 2 Œ1 � p=q; 1/; set ‚.x/ D
.�.Ri

p=q
.x///0�i<q; the image of ‚ is O.p=q/.

In O.p=q/, the first word by lexicographical order is ‚.0/, the second one is ‚.1=q/

and so on until the last word ‚.1 � 1=q/.

3.8.3. Let F 2 M�, with j.F / D p=q; let Œp0=q0; p1=q1� be the Farey interval with
center p=q. Recall that

p0 C p1 D p; q0 C q1 D q; p1q0 � p0q1 D 1: (12)

Then O.p0=q0/ is the set of words deduced from F.A/ by cyclic permutation, and
O.p1=q1/ is similarly the set of words deduced from F.B/ by cyclic permutation.
Here, we extend the definition of O.p=q/ setting O.0=1/ D fAg and O.1=1/ D fBg.

It follows from (12) that R
q1

p=q
.0/ D R

�q0

p=q
.0/ D 1 � 1=q. Set

O1.p=q/ D f‚.Ri
p=q.0//I 0 < i < q1g;

O0.p=q/ D f‚.R�i
p=q.0/I 0 < i < q0gI

we have thus defined a partition of O.p=q/ X f‚.0/; ‚.1 � 1=q/g.

3.8.4. Let F , p=q, p0=q0, p1=q1 be as above. We define a cyclical order on O.p=q/ t
O.p0=q0/ tO.p1=q1/.

For this cyclical order, the two sets O.p=q/ and O.p0=q0/ t O.p1=q1/, both of
cardinality q, alternate. The two intervals bounded by ‚.0/ and ‚.1 � 1=q/ are
O.p1=q1/ t O1.p=q/ and O.p0=q0/ t O0.p=q/; moreover the element that succeeds
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‚.0/ is in the former interval. The order induced on O.p1=q1/ or O1.p=q/ is the
lexicographical order, while the order induced on O.p0=q0/ or Oo.p=q/ in the antilex-
icographical order. See Figure 6 with p=q D 2=5.

BABAA

BA

ABABA

AB

AABAB

AAB

ABAAB

ABA

BAABA

BAA

Figure 6. Order on O.2=5/ tO.1=3/ tO.1=2/.

Let us give a more explicit description of this cyclical order:

Lemma 3.15. Let ! be an element in O.p=q/, and denote by !�, !C the elements
(in O.p0=q0/ t O.p1=q1/) which are immediately before and after ! for the cyclical
order. Denote by ‚0, ‚1 the maps defined as ‚ with respect to p0=q0, p1=q1. Then
the following holds:

� If ! D ‚.Ri
p=q

.0// with 0 � i < q1 then !C D ‚1.Ri
p1=q1

.0//;

� if ! D ‚.Ri
p=q

.1 � 1=q// with 0 � i < q0 then !C D ‚0.Ri
p0=q0

.1 � 1=q0//;

� if ! D ‚.R�i
p=q

.0// with 0 � i < q0 then !� D ‚0.R�i
p0=q0

.0//;

� if ! D ‚.R�i
p=q

.1 � 1=q// with 0 � i < q1 then !� D ‚1.R�i
p1=q1

.1 � 1=q1//.

Proof. From (12) we obtain p1=q1 � p=q D 1=q1q. It follows that given i , j with
0 � i; j < q1, the point Ri

p=q
.0/ is before R

j

p=q
.0/ (for the usual order in Œ0; 1/) if

and only if the point Ri
p1=q1

.0/ is before R
j

p1=q1
.0/. Therefore the first assertion of

the lemma holds. The others are proven similarly. �

Define some special words

!A D ‚.p=q/; !B D ‚..p�1/=q/; B! D ‚.1 � p=q/; A! D ‚.1 � .pC1/=q/:

From the description of the cyclical order, we see that the words respectively starting
with A, starting with B , ending with A, ending with B form the intervals

AO D ŒB!C;A!�; BO D ŒA!C; B!�; OA D Œ!A; !�
B �; OB D Œ!B ; !�

A �:

Observe that for 0 < p=q < 1=2, the union of OA and AO is the full set O.p=q/ t
O.p0=q0/ tO.p1=q1/, and these intervals intersect at both ends.
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3.8.5. We assume now that p=q ¤ 1=2. If p=q < 1=2 (resp. p=q > 1=2) then we can write
F D FCF 0 (resp. F�F 0), with F 0 2M�, j.F 0/ D p=.q�p/ (resp. j.F 0/ D .2p�q/=p ).

Assume for instance that p=q < 1=2. Write p0=q0 D p=.q�p/, and let Œp0
0=q0

0
; p0

1=q0
1
�

be the Farey interval which has p0=q0 as center; we have

p0
0

q0
0

D p0

q0 � p0

;
p0

1

q0
1

D p1

q1 � p1

:

Lemma 3.16. The image of O.p0=q0/tO.p0
0=q0

0
/tO.p0

1=q0
1
/ under FC is exactly the

interval AO; moreover FC preserves the cyclical orders.

Proof. Consider the map induced by Rp=q on Œ0; 1 � p=q/; it is equal to

x 7! x C p=q if 0 � x < 1 � 2p=q;

x 7! x C 2p=q � 1 if 1 � 2p=q � x < 1 � p=q:

Conjugating by the homothety of ratio .q�p/=q, we obtain Rp0=q0 on Œ0; 1/. This shows
that the image of O.p0=q0/ under FC is the interval of O.p=q/ formed by the words
‚.Ri

p=q
.0// such that Ri

p=q
.0/ 2 Œ0; 1 � p=q/, i.e., the words that start with A. The

other conclusions of the lemma are proved similarly. One should observe that for
" D 0; 1, FC.O".p0=q0// is the intersection of FC.O.p0=q0// with O".p=q/. �

3.8.6. For F 2 M�, denote by H C
F the set of .A; B/ 2 SL.2; R/2 such that

.F.A/; F.B// belongs to the positive free component (which is described by Propo-
sition 3.4).

Proposition 3.17. Let .A; B/ 2 H C
F . For any ! 2 O.p=q/ t O.p0=q0/ t O.p1=q1/,

the corresponding matrix is hyperbolic. Moreover, the stable directions s.!/ and
unstable directions u.!/ are all distinct and are positioned according to the following
rules:

� for any ! 2 O.p=q/, s.!/ is immediately after u.!/;

� for any ! 2 O.p0=q0/ tO.p1=q1/, s.!/ is immediately before u.!/;

� the restriction of the cyclical order to the u.!/ is the cyclical order considered
above.

(It follows from these three rules that the same is true for the restriction to the s.!/.)

Proof. The first assertion is clear. If j.F / D 1=2, the cyclical order is the one
described above. Assume j.F / D p=q ¤ 1=2, for instance p=q < 1=2. We write
F D FCF 0, p0=q0 D p=.q�p/ as above. Let A0 D A, B 0 D AB . We prove the
proposition by induction, thus we may assume that the conclusions are satisfied for
.A0; B 0/ 2 H C

F 0 . This means that the points fu.!/; s.!/I ! 2 AOg are all distinct
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and the restriction of the cyclical order to this set is in accordance with the proposition.
Let a W OA ! AO be the bijection which takes the final letter A into first position;
this map corresponds to A in the sense that

Au.!/ D u.a!/; As.!/ D s.a!/; ! 2 OA;

and therefore the restriction of the cyclical order to the set fu.!/; s.!/I ! 2 OAg
is also in accordance with the proposition. As AO , OA are intervals which cover
O.p=q/ t O.p0=q0/ t O.p1=q1/ and have non-empty intersection at both ends, the
points fu.!/; s.!/I ! 2 O.p=q/ tO.p0=q0/ tO.p1=q1/g are all distinct and there is
only one cyclical order with the given restrictions, which is the one described in the
proposition. �

3.8.7. Now we give the other proof of Proposition 3.5. It is sufficient to show that
any .A; B/ 2 H C

F is uniformly hyperbolic. We will apply Lemma 2.7 and therefore
we will define sets U and S satisfying the required conditions.

For ! 2 O.p=q/, we define intervals I u
! D Œu.!�/; u.!/�, I s

! D Œs.!/; s.!C/�.
Let U DS

!2O.p=q/ I u
! , S DS

!2O.p=q/ I s
! . Then U , S are disjoint compact subsets

with finitely many components which alternate. To apply Lemma 2.7, we need to
check that AU [ BU � U , A�1S [ B�1S � S . Indeed, we have:

� A.I u
! / D I u

a! for !A < ! < !B ;

� A.I u
! / � I u

‚.0/
for !B � ! � !A;

� B.I u
! / D I u

b!
for !B < ! < !A;

� B.I u
! / � I u

‚.1�p=q/
for !A � ! � !B .

(The map b W OB ! BO is defined analogously as a, by switching a letter B from
the last to the first place.) This proves that AU and BU are disjoint and contained
in U ; it also follows that no non-trivial product of A, B is equal to ˙id. Similar
formulas hold for A�1, B�1 and the intervals I s

! . Thus we can apply Lemma 2.7
and conclude that .A; B/ is uniformly hyperbolic. The sets U and S are of course
the unstable and stable cores, and the formulas above give the action of A, B on the
components of the associated multicone. Both U and S have q components, and the
set O.p=q/tO.p0=q0/tO.p1=q1/ is in canonical correspondence with the connected
components of the complement of U t S : see Figure 7.

4. Boundaries of the components

4.1. A general theorem on boundary points. Again, fix any subshift of finite type
† � N Z, and let H � SL.2; R/N be the associated hyperbolicity locus.



Vol. 85 (2010) Uniformly hyperbolic finite-valued SL.2; R/-cocycles 841

s.BABAA/

u.BABAA/

u.BA/

s.BA/

s.ABABA/

u.ABABA/

u.AB/

s.AB/

s.AABAB/

u.AABAB/u.AAB/

s.AAB/

s.ABAAB/

u.ABAAB/

u.ABA/

s.ABA/

s.BAABA/

u.BAABA/

u.BAA/

s.BAA/

Figure 7. The intervals I u
! , I !

s for p=q D 2=5.

Given x D .xi /i2Z 2 †, we denote

W u
loc.x/ D f.zi / 2 †I zi D xi for i < 0g;

W s
loc.x/ D f.zi / 2 †I zi D xi for i � 0g:

The next result describes the boundary points of connected components of H .

Theorem 4.1. Let .A1; : : : ; AN / belong to the boundary of a connected component
H of H . Then one of the following possibilities holds:

(i) There exists a periodic point x 2 † of period k such that Ak.x/ D ˙id.

(ii) (“parabolic periodic”) There exists a periodic point x 2 † of period k such
that Ak.x/ ¤ ˙id is parabolic.

(iii) (“heteroclinic connection”) There exist periodic points x and y 2 †, of respec-
tive periods k and `, such that the matrices Ak.x/ and A`.y/ are hyperbolic
and there exist an integer n � 0 and a point z 2 W u

loc.x/ \ ��nW s
loc.y/ such

that
An.z/ � u.Ak.x// D s.A`.y//: (13)

Furthermore, for each component H , one can give uniform bounds to the numbers
k, `, n that may appear in the alternatives above.

In alternative (iii), there exists a point z D .zi /i2Z such that z�k�1 D z�1,
znC` D zn, and

Azn�1
: : : Az0

� u.Az�1
: : : Az�k

/ D s.AznC`�1
: : : Azn

/:

That is what we call a heteroclinic connection (provided both Az�1
: : : Az�k

and
AznC`�1

: : : Azn
are hyperbolic).
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Remark 4.2. In alternative (iii), the periodic points x and y cannot belong to the
same periodic orbit.

Proof. Assume the contrary, so k D ` and x D �j .y/ for some j with 0 � j < k.
Then

s.Ak.y// D An.z/ � u.Ak.x// D An.z/ � Aj .y/ � u.Ak.y//

D AnCj .��j z/ � u.Ak.y//:

So, writing A D Ak.y/ and B D AnCj .��j z/, we have that A is hyperbolic and
B �u.A/ D s.A/. A direct calculation shows that limm!C1 tr AmB D 0. Therefore
there is m > 0 such that AmB D AkmCnCj .��j z/ is elliptic. Since zkmCn D z�j ,
this contradicts the assumption that the N -tuple belongs to the boundary of H . �

Remark 4.3. If † is the full-shift, and H is a principal component, then by Propo-
sition 4 in [13] one can take n D 0, k D ` D 1 in alternative (iii) of Theorem 4.1.

Remark 4.4. We will see later (Proposition 4.9) that in the case of full shifts, alter-
native (i) in Theorem 4.1 is only possible if H is a principal component.

Theorem 4.1 has the following interesting consequence:

Corollary 4.5. Every connected component of H is a semialgebraic set.

Notice H itself is not semialgebraic, because it has infinitely many connected
components (see Theorem 2.4.5 from [4]).

Proof of the corollary. Of course, SL.2; R/N itself is a (semi) algebraic subset of
R4N .

Let H be a connected component of H . Let K be the upper bound on the numbers
k, `, n that appear in Theorem 4.1. Let S1, S2, and S3 be the subsets of SL.2; R/N

formed by the N -tuples that satisfy respectively alternatives (i), (ii), and (iii) of the
theorem, with k, `, n not greater than K.

The set S1 [ S2 is obviously semialgebraic; let us see that S3 also is. Introduce
variables �, � 2 R, w1, w2 2 R2, and rewrite (13) as8̂<

:̂
Ak.x/ � w1 D �w1; �2 > 1;

A`.y/ � w2 D �w2; �1 < � < 1;

An.z/ � w1 D w2; w1 ¤ .0; 0/:

Such relations define a semialgebraic set on SL.2; R/N � R6, which is sent by the
obvious projection onto S3. Therefore S3 is semialgebraic, by the Tarski–Seidenberg
principle (see [4], Theorem 2.2.1).
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The set S D S1 [ S2 [ S3 is closed, disjoint from H , and contains the boundary
of H . Thus H is a connected component of the semialgebraic set SL.2; R/N X S ,
and hence is semialgebraic, by Theorem 2.4.5 from [4]. �

To prove Theorem 4.1, we first establish two lemmas. In both of them we assume
that .A1; : : : ; AN / belongs to the hyperbolic locus, and let U˛ , S˛ be its unstable and
stable families of cores (see §2.3).

Lemma 4.6. Let ˇ be a symbol, and v 2 @Uˇ . Then there exist a symbol ˛ such that
˛ ! ˇ and A�1

ˇ
.v/ 2 @U˛ .

Proof. Recalling the definition of Uˇ , we see that the condition v 2 @Uˇ is equivalent
to the following:

v 2 Ku
ˇ

and there exist a point w 2 Aˇ Ks
ˇ

and an open interval I � P 1

such that @I D fv; wg and I \Ku
ˇ
D ¿.

Let v, w, and I be as above. Take x D .xi /i2Z 2 † such that x�1 D ˇ and
eu.x/ D v. Let ˛ D x�2. Set v0 D A�1

ˇ
.v/, w0 D A�1

ˇ
.w/, and I 0 D A�1

ˇ
.I /. We

have v0 2 Ku
˛ , w0 2 A˛Ks

˛ , and I 0 \Ku
˛ D ¿. We conclude that v0 2 @U˛ . �

Lemma 4.7. Let v 2 @U˛ . Then there exist a periodic point x 2 † of period k, a
point z 2 W u

loc.x/, and an integer m � 0 such that zm�1 D ˛ and

v D Am.z/ � u.Ak.x//:

Analogously, if v0 2 @S˛ then there exist a periodic point y 2 † of period `, a
point w 2 W s

loc.x/, and an integer p � 0 such that w�p D ˛ and

v0 D A�p.w/ � s.A`.y//:

Moreover, k, m, `, and p are less or equal than the rank of the families of cores.

Proof. We will prove one half of the lemma. Take v 2 @U˛ . Set ˛0 D ˛ and v0 D v.
Applying repeatedly Lemma 4.6 we find a sequence ˛0  ˛1  ˛2  � � � such that

vnC1 D A�1
˛n

: : : A�1
˛0

v0 2 @U˛nC1
for every n � 0.

Let n0 be the rank of the family U˛ . By the pigeon-hole principle, there exist integers
m and k such that 0 � m < mC k � n0 and ˛m D ˛mCk and vm D vmCk . Then
vm is fixed by A˛m

: : : A˛mCk�1
, and so must be the unstable direction of this matrix

product. We also have v0 D A˛0
: : : A˛m�1

� vm. The lemma follows. �
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Proof of Theorem 4.1. Observe that unstable and stable families of cores vary con-
tinuously with the N -tuple. So if we restrict ourselves to N -tuples in H , the rank n0

of the families of cores is constant.
Now take .A1; : : : ; AN / in the boundary of H . Assume that there is no periodic

point x 2 † of period n � n0 for which An.x/ D ˙id. We will show that then one
of the alternatives (ii) or (iii) in the theorem holds.

Consider the following finite subsets of P 1:

U �̨ D fAm.z/ � u.Ak.x//I 1 � k � n0; 0 � m � n0;

x D �kx; z 2 W u
loc.x/; zm�1 D ˛g;

S�
ˇ D fA�p.w/ � s.A`.y//I 1 � ` � n0; 0 � p � n0;

y D �`y; w 2 W s
loc.y/; w�p D ˇg:

(14)

Notice that

U �
ˇ �

[
˛I ˛!ˇ

Aˇ U �̨ and S �̨ �
[

ˇ I ˛!ˇ

A�1
˛ S�

ˇ : (15)

(To see this, use for instance that if x D �kx then u.Ak.x// D Ax�1
�u.Ak.��1x//.)

Assume that U �̨ \ S�
ˇ
¤ ¿ for some ˛, ˇ with ˛ ! ˇ. Then, for some m, x etc

as in (14), we have an equality Am.z/ � u.Ak.x// D A�p.w/ � s.A`.y//. Moreover,
we can assume that w D �nz, where n D m C p. Then An.z/ � u.Ak.x// D
s.A`.y//, with z 2 W u

loc.x/\ ��nW s
loc.y/. If Ak.x/ or A`.y/ is parabolic, we are in

alternative (ii) of the theorem. Otherwise, both Ak.x/ and A`.y/ are hyperbolic and
alternative (iii) holds.

In order to complete the proof of the theorem, we will assume by contradiction that
U �̨\S�

ˇ
D ¿ for every ˛, ˇ with ˛ ! ˇ. It follows from (15) that U �̨\A˛S �̨ D ¿

for every ˛.
Take a sequence .A1.i/; : : : ; AN .i// in H converging to .A1; : : : ; AN / as i !1.

Let A˛.1/ D A˛ .
Define sets U �̨.i/, S �̨.i/ in the same way U �̨, S �̨ were defined, replacing each

Aˇ with Aˇ .i/. By continuity of the u and s directions for non-elliptic matrices far
from ˙id, we have that for every large i , U �̨.i/ and S �̨.i/, are close to U �̨ and S �̨,
respectively.

For i 2 N[f1g, define other sets U˛.i/, S˛.i/ as follows: U˛.i/ is the comple-
ment of the union of the connected components of P 1XU �̨.i/ that intersect A˛S �̨.i/,
and S˛.i/ is the complement of the union of the connected components of P 1XS �̨.i/

that intersect A�1
˛ U �̨.i/. If I is large enough then U˛.i/ and S˛.i/ are respectively

close (with respect to the Hausdorff distance) to U˛.1/ and S˛.1/.
By Lemma 4.7, if i < 1 then U˛.i/ and S˛.i/ are precisely the unstable and

stable families of cores of the N -tuple .A˛.i//. It follows from continuity that the sets
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U˛ D U˛.1/, S˛ D S˛.1/ also satisfy properties (i)–(iv) of §2.3. By Lemma 2.4,
.A˛/ has a family of multicones, that is, .A˛/ 2 H . Contradiction. �

From this point until the end of Section 5, we will be interested only in full shifts.

4.2. Non-principal components. As mentioned in Remark 4.4, we will prove that
no˙identity products exist in the boundaries of non-principal components.

Let us begin with a lemma about pairs of matrices. Recall that a uniformly
hyperbolic pair induces maps eu, es W 2Z ! P 1 (see §2.3).

Lemma 4.8. For every c > 0 there exists ı D ı.c/ > 0 with the following properties.
If .A; B/ is a uniformly hyperbolic pair with

kAk � c and kB 
 idk < ı (16)

then .A; B/ belongs to a principal component. Moreover, the images of the maps eu,
es are (disjoint closed) intervals Iu, Is � P 1.

Proof. Our study of the N D 2 case shows that the boundary of a non-principal
component cannot contain a pair of the form .A;˙id/. If follows that there exists
ı D ı.c/ such that every hyperbolic pair .A; B/ satisfying (16) belongs to a principal
component.

Let us also assume that ı.c/ is small enough so that (16) implies

inf
x2P1

j.A˙1/0.x/j C inf
x2P1

j.B˙1/0.x/j > 1:

Now, given a hyperbolic pair .A; B/ satisfying (16), let Iu and Is be disjoint closed
intervals such that @Iu D fuA; uBg and @Is D fsA; sBg. By the choice of ı > 0, we
have jA.Iu/j C jB.Iu/j > jIuj (where j � j denotes interval length). Therefore

Iu D A.Iu/ [ B.Iu/:

Let us write A1 D A, A2 D B . Given z0 2 Iu, there exists x�1 2 f1; 2g and
z1 2 Iu such that Ax�1

.z1/ D z0. Inductively, we find x�n 2 f1; 2g and zn 2 Iu such
that Ax�n

.zn/ D zn�1. We form a sequence x D .xi /i2Z 2 2Z, choosing arbitrarily
xi for i � 0. Then it is easy to see that z0 D eu.x/. This shows that eu.2Z/ D Iu.
The proof that es.2Z/ D Is is analogous. �

Let HNP � SL.2; R/N be the union of the non-principal components.

Proposition 4.9. If an N -tuple is in HNP then no product of the matrices in the
N -tuple equals˙id.

Furthermore, for every compact subset K of SL.2; R/N , there exists a neighbor-
hood V of f˙idg such that if an N -tuple belongs to K \HNP then no product of the
matrices in the N -tuple belongs to V .
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Proof. Given c > 1, let ı D ı.2c/ be given by Lemma 4.8. For a compact set of the
form K.c/ D f.A1; : : : ; AN / 2 SL.2; R/N I kAik � cg, we will take V as the open
neighborhood of f˙idg of size ı.

Fix an N -tuple 
0 2 K.c/ \HNP. By contradiction, assume that there exists a
product of the matrices in 
0 which is ı-close to˙id.

Take 
 D .A1; : : : ; AN / 2 HNP close to 
0. If 
 is close enough to 
0, there exists
a product of the Ai ’s, say B , which is ı-close to˙id.

Fix some cyclical order on P 1. Since 
 is not in a principal component, there
exist i; j; k; ` 2 f1; : : : ; N g such that

u.Ai / < s.Aj / < u.Ak/ < s.A`/ < u.Ai /:

Lemma 4.8 applied to the pair .Ai ; B/ implies that there is an interval containing
u.Ai / and u.B/, and disjoint from fs.Aj /; s.A`/g; in particular u.B/ must belong
to the interval .s.A`/; s.Aj //. A symmetric argument gives u.B/ 2 .s.Aj /; s.A`//.
We reached a contradiction. �

Next, let us prove that connected components of cores associated to a N -tuple in
a non-principal component are non-degenerate intervals:

Lemma 4.10. Fix a non-principal component H � SL.2; R/N , and let K �
SL.2; R/N be a compact set. Then there exists ı > 0 such that for any 
 2 H \K,
each interval composing the unstable or stable cores of 
 has length at least ı.

Proof. Assume that there exists 
 2 H \K whose unstable core U has a connected
component I which is very small. Recalling Proposition(s) 2.5 (and 2.8), there
exists a product B of matrices in 
 such that B.U / � I . Moreover, we can give an
upper bound for kBk depending on H and K only. If follows that the diameter of
U is small. Consider the shortest closed interval that contains U . That interval is
forward-invariant by each matrix in 
. This implies that 
 is in a principal component,
contradiction. �

4.3. Limit cores. The proof of Theorem 4.1 gives some useful information about
the families of cores. We will register that information for later use, however we will
focus on the case of full shifts, where cores are defined differently (see §2.4.2).

The analogue of Lemmas 4.6 and 4.7 for full shifts are the following:

Lemma 4.11. Let .A1; : : : ; AN / be uniformly hyperbolic w.r.t. the full shift, and let
U be the unstable core. For any v 2 @U , then there exists a symbol i such that
A�1

i .v/ 2 @U .

The proof is analogue to that of Lemma 4.6, but let us give it for the reader’s
convenience:
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Proof. Let v 2 @U ; then v 2 Ku, so v D eu.x/. Let v0 D A�1
i .v/ where i D x�1;

then v0 D eu.��1.x// 2 Ku. Since v 2 @U , there is an open interval I disjoint
from Ku with endpoints v and w 2 Ks . Then the open interval I 0 D A�1

i .I / is
disjoint from Ku, has one endpoint v0 in Ku and the other in Ks . This implies that
v0 2 @U . �

From this lemma one easily gets:

Lemma 4.12. Let .A1; : : : ; AN / be uniformly hyperbolic w.r.t. the full shift, and let
U and S be the unstable and stable cores. Let v 2 @U . Then

v D Aim : : : Ai1 � u.Ajk
: : : Aj1

/

for some choice of indices. (m can be zero, meaning that v D u.Ajk
: : : Aj1

/.)
Analogously, if v0 2 @S then

v0 D A�1
i 0
1

: : : A�1
i 0
p
� s.Aj 0

`
: : : Aj 0

1
/

for some choice of indices. (p can be zero.) Moreover, k, m, `, and p are less or
equal than the rank of U .

Using the last lemma, one shows:

Proposition 4.13. Let H be a connected component of the hyperbolic locus relative
to the full shift on N symbols. For each i 2 N, let .A1.i/; : : : ; AN .i// 2 H have
unstable core U.i/ and stable core S.i/. Suppose that .A1.i/; : : : ; AN .i// converges
to some .A1; : : : AN / in the boundary of H as i !1. Also assume every product of
the Aj ’s of length less or equal than the rank of the cores is different from˙id. Then
the sets U.i/ and S.i/ converge (with respect to the Hausdorff distance) as i !1,
say to sets U and S . Moreover, the intersection U \ S is finite and non-empty.

We call the sets U and S given by the proposition the limit cores of .A1; : : : ; AN /.
If H is a non-principal component then, by Proposition 4.9, the no˙id assumption

in Proposition 4.13 is satisfied; hence the limit cores are well-defined for each point
in the boundary of H . Moreover, we have:

Proposition 4.14. If an N -tuple belongs to the boundaries of two different non-
principal components, then the respective limit cores are precisely the same.

However, we do not know if the boundaries of two different components can meet.

Proof of the proposition. Fix an N -tuple .A1; : : : ; AN / in the closure of a non-prin-
cipal component H . Let U and S be the limit cores with respect to H .
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Let Ku� be the set of all points of the form uP or Q.uP /, where P and Q are
products of the Ai ’s. (Recall that uP is defined, by Proposition 4.9.) Analogously,
let Ks� be the set of all sP and Q�1.sP /. Then Ku� � U and Ks� � S . Also, by
Lemma 4.12, @U � Ku� and @S � Ks�.

We claim that no point in Ku� is isolated. Indeed, consider a point x D Q.uP /.
By Lemma 4.10, @U , and hence Ku� , contains at least 4 points. In particular, we can
find y 2 Ku� different from uP and from sP . The sequence QP n.y/ is contained in
Ku� X fxg and converges to x. This shows that x is not isolated. Symmetrically, no
point in Ks� is isolated.

It follows from these facts that the complement of the union of the connected
components of P 1 XKu� (resp. P 1 XKs�) that intersect Ks� (resp. Ku� ) is precisely U

(resp. S ). This procedure describes U and S without referring to H , so the proposition
follows. �

4.4. An addendum for the full 2-shift. In the light of the general results about
boundaries obtained so far, let us come back to the case of the full two-shift and give
some additional information complementing Theorem 3.2:

Proposition 4.15. Let H be a non-principal connected component of the hyperbolic
locus relative to the full shift on two symbols. Then the following holds:

(i) No˙identity products exist for a pair on the boundary of H .

(ii) No heteroclinic connection occurs on the boundary of H .

(iii) There are only three words (other than their cyclic permutations and powers)
that can become parabolic on the boundary of H .

Proof. Let H be a twisted component. Assertion (i) follows from Proposition 4.9.
For .A0; A1/ 2 H , the cores U and S are described precisely in §3.8.7 – in particular,
we have the following:

(a) The sets @U and @S are respectively formed by unstable and stable directions
of certain “special” products of A0’s and A1’s.

(b) If points v 2 @U and w 2 @S are “neighbors” (in the sense that there is an
open interval with endpoints v and w that does not meet U [ S ) then they are
respectively the unstable and stable directions of the same “special” product of
A0’s and A1’s.

(c) There are three words in the letters A0 and A1 which are not powers and that
form, together with their cyclic permutations, the full list of special words that
need to be considered in (b) and (c).

(d) No connected component of U intersects both A0.U / and A1.U /.

It follows from (d) and Lemma 4.11 that:
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(e) For every v 2 @U there exist a unique i 2 f0; 1g such that A�1
i .v/ 2 @U .

Repeated application of (e) gives:

(f) For any v0 2 @U , there exists a unique sequence i1, i2, …in f0; 1g such that
vj C1 D A�1

ij
.vj / 2 @U .

Now it follows from (a) that:

(g) For any v0 2 @U , if vj is the sequence given by (f) and ` is the least positive
integer such that v` 2 fv0; : : : ; v`�1g then v` D v0.

Now let .A0; A1/ be in the boundary of H , and let U and S be the limit cores
given by Proposition 4.13 (which are well-defined because H is not principal). By
Lemma 4.10, U and S have the same number of components as before taking the
limit, and none of these components is a point. It follows that Properties (d) and (e)
above are also true for the limit cores. Property (f) follows from (e). So (g) makes
sense for the limit cores, and it is true by continuity.

Any v0 2 @U equals u.P / where P D Ai1 : : : Ai` and the indices ij are as in
(f) and (g). The word P is not a power, and so is one the special words alluded in
(a)–(c). Let w0 2 @S be the neighbor of v0. (Precisely, we define w0 as v0 if v0 2 S ,
otherwise we let w0 2 S be so that there is an open interval with endpoints v0 and
w0 that does not intersect U [ S .) We infer from property (b) that w0 D s.P /. In
particular, v0 2 S implies that P is parabolic.

Now, suppose v0 is also given by Ru.Q/, where Q and R are words in the letters
A0 and A1, with R allowed to be the empty word (corresponding to id product).
It follows from uniqueness in (f) that the infinite words RQQQ : : : and PPP : : :

must coincide. In particular, Q is (as a word) a power of a cyclic permutation of P .
Therefore Q is parabolic (as a matrix) if and only if so is P .

By contradiction, assume there is a heteroclinic connection Ru.Q/ D s.P 0/, for
some products P 0, Q, R, of A0’s and A1’s. Then v0 D Ru.Q/ belongs to U \ S .
Therefore, as we have seen, Q has to be parabolic. This is forbidden by definition
of heteroclinic connection, so assertion (ii) of the theorem is proved. Assertion (iii)
follows similarly. �

4.5. An example of heteroclinic connection. In this subsection, we introduce what
is probably the simplest example of heteroclinic connection for a principal component.
The base dynamics is full-shift on 3 symbols. The component H of the hyperbolicity
locus H is the one that contains triples .A; B; C / such that .A; B/ 2 H C

id (the positive
free component for the full-shift on two symbols) and C D �AB; such triples are
indeed obviously uniformly hyperbolic. The associated stable and unstable cores
have two components.

Proposition 4.16. A triple .A; B; C / belongs to H iff the following conditions are
satisfied:
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(i) .A; B/ 2 H C
id ;

(ii) tr C > 2;

(iii) the stable and unstable directions for C satisfy

sA < uC < sAB ; uAB < sC < uB ; sA < uC < sC < uB I
(iv) sA < C uB < uC .

AB C

AB

BA
C �1sA C uB

Figure 8. A possible situation for .A; B; C / 2 H in Proposition 4.16; the cores are indicated.

Proof. Let yH be the set of parameters defined by the 4 conditions in the proposition.
Clearly, yH is open in .SL.2; R//3. It is also clear that the boundary of yH does not
intersect the hyperbolicity locus H , and that yH contains any triple .A; B;�AB/ with
.A; B/ 2 H C

id . To prove that yH D H , we prove that yH is connected and contained
in H .

To see that yH is connected, we fix .A; B/ 2 H C
id and check that the set of C

satisfying (ii), (iii), (iv) is connected. Indeed, the set of positions for .uc ; sc/ in
P 1 �P 1 determined by (iii) is connected, and for any such position, condition (iv) is
equivalent to some condition tr C > k (> 2). This proves that yH is connected.

Let .A; B; C / 2 yH . Define

UAC D Œmin.uA; C uB/; max.uAB ; uC /�; SAD Œmin.sBA; A�1sc/; sA�;

UB D ŒuB ; max.uBA; BuC /�; SBC D Œmin.sAB ; sC /; max.sB ; C �1sA/�;

U DUAC t UB ; S D SA t SBC :
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We have then

A.U / [ C.U / � UAC ; B.U / � UB ;

B�1.S/ [ C �1.S/ � SBC ; A�1.S/ � SA:

It follows from Lemma 2.7 that .A; B; C / is uniformly hyperbolic (with cores U , S ).
The proof is now complete. �

We have seen in the proof of the proposition that for fixed A, B , uC , sC sat-
isfying (i), (ii), (iii), the set H is determined by a condition tr C > k for some
k D k.A; B; uC ; sC / > 2. If we take C D C0 we still have a triple .A; B; C0/ such
that (i), (ii), (iii) are satisfied and C0uB D sA. In a neighborhood V of .A; B; C0/ in
.SL.2; R//3, the equation C uB D sA determines a smooth hypersurface contained
in the boundary of H . This part of the boundary of H corresponds to a heteroclinic
connection.

We will investigate in the next two subsections what happens on the side of the
hypersurface not contained in H . We already know from Proposition 6 in [13] that
the other side V X xH intersects the elliptic locus E (the (open) set of triples that have
an elliptic product.) In the sequel we will construct two examples displaying different
phenomena near boundary points:

� In one example (Proposition 4.17) we have V X xH � E .

� In another example (Proposition 4.18), any neighborhood V intersects infinitely
many hyperbolic components.

For convenience, we will assume that sA < uC < uA and sB < sc < uB (as in
Figure 8).

4.6. Heteroclinic connection with elliptic products on the other side. Let H �
SL.2; R/3 be the hyperbolic component introduced in §4.5.

Proposition 4.17. There there exist a point .A0; B0; C0/ in the boundary of H , and
a neighborhood V � SL.2; R/3 of .A0; B0; C0/ such that the following holds:

� If .A; B; C / 2 V \ @H then C � u.B/ D s.A/.

� If .A; B; C / 2 V X xH then .A; B; C / 2 E (that is, there exists an elliptic product
of A, B , and C ’s).

For another example with similar properties, see Proposition 7 in [13].

Proof. Fix numbers �, � , and 	 such that

1 < � < 1Cp2;
�2 C 1

�2 � 1
< � <

2

� � 1
; 	 > �: (17)



852 A. Avila, J. Bochi, and J.-C. Yoccoz CMH

Define three matrices in SL.2; R/:

A0 D
�

� 0

��.� � ��1/ ��1

�
; B0 D

�
� �.� � ��1/

0 ��1

�
; C0 D

�
0 �1

1 	 C 	�1

�
:

All matrices have traces > 2. The stable and unstable directions are ordered as
follows:

u.B0/ D
�

1

0

�
< s.A0/ D

�
0

1

�
< u.C0/ D

�
1

�	

�
< u.A0/ D

�
1

��

�

< s.B0/ D
�

1

���1

�
< s.C0/ D

�
1

�	�1

�
< u.B0/:

Also, C0.u.B0// D s.A0/. Finally, due to one inequality in (17) we have

tr A0B0 D �2 � �2.� � ��1/2 C ��2 < �2:

We conclude that .A0; B0; C0/ belongs to the boundary of the hyperbolic component
H described in §4.5. Let V be a small neighborhood of this 3-tuple such that V X xH D
f.A; B; C / 2 V I u.B/ < C � u.B/ < s.A/g. To complete the proof, we will show
that this set is contained in E , provided V is small enough.

For any .A; B; C / 2 V X xH , take a basis of R2 close to the canonical basis
and formed by vectors collinear to u.B/, s.A/, so that the matrices of A, B , and C

become

A D
�

�1 0

��1.�1 � ��1
1 / ��1

1

�
; B D

�
�2 �2.�2 � ��1

2 /

0 ��1
2

�
;

and

C D
�

t �1C td

1 d

�
;

for certain numbers �1 and �2 close to �, �1 and �2 close to � , d close to 	 C 	�1,
and t close to zero. Since u.B/ < C.u.B// < s.A/, t must be positive.

We are going to look for elliptic products of the form AmCBn. So we write

Am D
�

�m
1 0

�
1.m/ ��m
1

�
; Bn D

�
�n

2 
2.n/

0 ��n
2

�
;

with xi1.m/ D �1.�m
1 � ��m

1 / and 
2.n/ D �2.�n
2 � ��n

2 /. A computation gives

tr AmCBn D �m
1 t�n

2 � 
1.m/t
2.n/ � 
1.m/.�1C td /��n
2

C ��m
1 
2.n/C ��m

1 d��n
2

D �v.m; n/t C u.m; n/;
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where

v.m; n/ D �m
1 �n

2.�1�2 � 1/
�
1CO.��2m

1 C ��2n
2 /

�
; (18)

u.m; n/ D �1�m
1 ��n

2 C �2��m
1 �n

2 CO.��m
1 ��n

2 /: (19)

Choose a sequence .mk; nk/ (depending on �1 and �2 only) starting at .m0; n0/ D
.0; 0/, such that for all k, .mkC1; nkC1/ is either .mk C 1; nk/ or .mk; nk C 1/, and

��1
2 � �

mk

1 �
�nk

2 � �1: (20)

Write vk D v.mk; nk/, uk D u.mk; nk/. Assuming V is sufficiently small, there is
some constant k0 (not depending on .A; B; C / in V ) such that vk > 0 and uk > 2

for every k � k0.
Let

ı D max
�j�1 � �j; j�2 � �j; j�1 � � j; j�2 � � j; jd � 	 � 	�1j�:

(Notice that t does not appear above.) Let Oı.1/ indicate a quantity that goes to zero
as ı ! 0. It follows from (18), (19), and (20) that

vkC1

vk

D �COı.1/; 2� COı.1/ < uk < �.�C ��1/COı.1/: (21)

For k � k0, define intervals

Ik D .˛k; ˇk/ D
�

uk � 2

vk

;
uk C 2

vk

�
:

Each Ik depends on �1, �2, �1, �2, and d , but not on t . Also,

j tr Amk CBnk j < 2 iff t 2 Ik :

We claim that if ı is sufficiently small then Ik\IkC1 ¤ ¿ for all k � k0. Indeed,
using (21), we get

˛k

ˇkC1

D uk � 2

ukC1 C 2
� vkC1

vk

� �.�C ��1/ � 2

2� C 2
� �COı.1/; (22)

˛kC1

ˇk

D ukC1 � 2

uk C 2
� vk

vkC1

� �.�C ��1/ � 2

2� C 2
� 1

�
COı.1/: (23)

From the assumption � < 2=.� � 1/ in (17), it follows that the right-hand side of
(22) is strictly less than 1COı.1/. The same is true for the (smaller) right-hand side
of (23). Thus we have shown that if k � k0 and ı is small enough then ˛k < ˇkC1

and ˛kC1 < ˇk; in particular Ik \ IkC1 ¤ ¿. Hence for small ı, we have[
k�k0

Ik D
�

lim inf
k!1

˛k; sup
k�k0

ˇk

� � .0; ˇk0
/:
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The number ˇk0
has a positive lower bound on V . Therefore, reducing the neighbor-

hood V of .A0; B0; C0/ if necessary, we have that for any .A; B; C / 2 V X xH , there
exists some k � k0 such that the corresponding t belongs to the corresponding Ik .
This means that the matrix Amk CBnk is elliptic, showing that .A; B; C / belongs to
the elliptic locus E . �

4.7. An example of accumulation of components. Again consider the hyperbolic
component H for the full shift in three symbols that was introduced in §4.5.

Proposition 4.18. There exists a path t 7! .A; B; C.t//with the following properties:

(i) .A; B; C.t// 2 H for t < 0.

(ii) At the parameter t D 0, the heteroclinic connection C.0/ � uB D sA occurs; in
particular, .A; B; C.0// belongs to @H .

(iii) There exists a sequence of hyperbolic components Hi , all different, and a se-
quence ti > 0 converging to 0 as i ! 1 such that .A; B; C.ti // 2 Hi for
all i .

(iv) There exist a sequence si > 0 converging to 0 as i !1 such that .A; B; C.si //

belongs to the elliptic locus E for all i .

Proof. Take .A; B/ in the positive free component of the full 2-shift. Assume that
the order in P 1 is so that

uB < sA < uA < sB < uB :

Take points p, q 2 .uBA; sBA/ such that

uBA < BA � q < p < q < sBA: (24)

Define the following cross-ratios (recall formula (2) from §2.2):

˛ D ŒuA; p; q; sA� ; ˇ D ŒuB ; BAq; p; sB �: (25)

Then ˛, ˇ > 1. We claim that the choices of A, B , p, q can be made so that

.˛ � 1/.ˇ � 1/ > 1: (26)

Indeed, if B is replaced with BT with T > 1 (keeping A fixed) then .A; B/ remains
in the free component; moreover (24) still holds keeping p, q (and hence ˛) fixed. If
T is large enough then so is ˇ and (26) is satisfied.

If �, 	 are the spectral radii of A, B , respectively, we also assume that

log 	

log �
62 Q: (27)
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Take any smooth path t 7! C.t/ such that

tr C.t/ > 2; sC.t/ 2 .sB ; uB/; uC.t/ 2 .sA; uA/ for all t ;

and

C.0/ � uB D sA;
@

@t
C.t/ � uB

ˇ̌̌
tD0

< 0: (28)

(In particular, C.t/�uB belongs to .sA; uC /, resp. .sC ; sA/ for small negative, resp. pos-
itive t .) By Proposition 4.16, .A; B; C.t// belongs to H for all small t < 0. So
assertions (i) and (ii) of the statement hold.

Next define (disjoint) intervals

In D Bn � ŒBp; BAq�; Jm D A�m � Œp; q� for integers n, m � 0.

Define also
I �

n D ŒuB ; BnC1Aq� for n � 0.

(See Figure 9.)
In the manifold P 1 we take charts using euclidian angle; these serve to com-

pute derivatives and speak of length of intervals. Let � > 0 be the derivative of
C.0/ W P 1 ! P 1 at uB . By (26), we can find " > 0 such that

.˛ � 1/.ˇ � 1/.1 � 2�"/ > 1: (29)

We claim that

there are sequences ni , mi " C1 such that ��1 � 2" <
jI �

ni
j

jJmi
j < ��1 � ": (30)

Indeed, there is a projective chart (see §2.2) P W P 1 ! R [ f1g such that P B B B
P �1.t/ D 	�2t . It follows that the limit lim

n!C1 	2njI �
n j exists. Analogously, the

limit lim
m!C1 �2mjJmj exists. By (27), for any N the set f�2m	�2nI m; n > N g is

dense in RC. So (30) follows.
Define also intervals

QJn D ŒBnC1Aq; Bnp�; QI �
m D ŒA�mq; sA�: (31)

Next we claim that if i is large enough and t is sufficiently close to zero then

jC.t/ � I �
ni
j < jJmi

j; (32)

jC.t/ � QJni
j > j QI �

mi
j: (33)
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.  .  .
.  .

  .

AB

AB

BA

C.ti /

I0

In�1

I �
n

V

J0

J1

Jm

BnC1Aq

Bnp

Bp

BAq p
q

A�mq

C.ti / � Bnp

Aq

Figure 9. A “non-strict” multicone for .A; B; C.ti //.

On the one hand, jC.t/ � I �
ni
j=jI �

ni
j ! � as i !1 and t ! 0. So, by (30),

lim sup
i!1; t!0

jC.t/ � I �
ni
j

jJmi
j � �.��1 � "/ < 1;

proving (32). On the other hand, it is easy to see that

˛ � 1 D lim
m!C1

jJmj
j QI �

mj
; ˇ � 1 D lim

n!C1
j QJnj
jI �

n j
:

So we can write

lim inf
i!1; t!0

jC.t/ � QJni
j

j QI �
mi
j D � lim inf

i!1
j QJni
j

j QI �
mi
j

D .˛ � 1/.ˇ � 1/� lim inf
i!1

jI �
ni
j

jJmi
j
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� .˛ � 1/.ˇ � 1/�.��1 � 2"/ (by (30))

> 1 (by (29)),

proving (33).
Now, it follows from (28), (32), and (33) that for every sufficiently large i , there

exists a small ti > 0 such that

C.ti / � I �
ni

b Jmi
and C.ti / � Ini �1 b .sA; uC /: (34)

Indeed, it is sufficient to take ti such that C.ti / maps the right endpoint of I �
ni

inside
the interval Jmi

and close to its right endpoint. (See Figure 10.)

uB

I �
ni

QJni
Ini �1

Jmi
QI �
mi

QImi �1
sA

C.ti /

Figure 10. Proof of (34).

Next we claim that for every sufficiently large i , the 3-tuple .A; B; C.ti // is
uniformly hyperbolic. For simplicity of writing, let i be fixed and let n D ni ,
m D mi , C D C.ti /. Let V D Vi be the interval ŒC.ti / � Bnp; Aq�. The set (see
Figure 9)

Ui D I �
ni
[ Ini �1 [ � � � [ I0 [ J0 [ � � � [ Jmi

[ Vi (35)

is mapped inside itself by each of the maps A, B , and C . Indeed, the intervals are
mapped into themselves as follows:

I �
n In�1 In�2 … I0 J0 J1 … Jm V

A V V V … V V J0 … Jm�1 V

B I �
n I �

n In�1 … I1 I0 I0 … I0 I0

C Jm V V … V V V … V V

We want to apply Lemma 2.7 with U D Ui given by (35); thus we need to define
also a set S D Si . We will make use of the symmetry of the example. Define a new
family of triples

. QA; zB; zC .t// D .B�1; A�1; C.t/�1/:
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We claim that the new triples meets all the requirements we imposed on .A; B; C.t//,
if we consider on P 1 the reverse cyclical order. Indeed, let Qp D p and Qq D BAq.
Define new cross-ratios Q̨ , Q̌ as in (25) (but with reversed order); then Q̨ D ˇ and
Q̌ D ˛, so the new (26) still holds. Other conditions as (27) and (28) are easily

checked. Consider the new families of intervals QIm, QJn, QI �
m (it is convenient to swap

the letters in the indices); then QIm is the gap between Jm and JmC1 and QJn is the
gap between In and InC1. (In particular the notation (31) is coherent.) The relevant
condition on mi , ni , ti is (34). Its dual version is:

C.ti /
�1 � QI �

mi
b QJmi

and C.ti /
�1 � QImi �1 b .sC ; uB/: (36)

An inspection of Figure 10 shows that it is true. Let zVi D ŒAq; C.ti /
�1A�mp�. Then

the set Si D QI �
mi
[ QImi �1 [ � � � [ QI0 [ QJ0 [ � � � [ QJmi

[ zVi is sent inside itself for
A�1, B�1, and C.ti /

�1.
This still not good if we want to apply Lemma 2.7 because Si is not disjoint from

Ui . To remedy that, it suffices for each i to make QJ0 slightly smaller (making sure
(36) is still satisfied) and modify the definition of Si accordingly. In this way we can
apply the lemma and conclude that .A; B; C.ti // is hyperbolic.

Next, we claim that:

k; ` � 0 ) tr C.ti /B
`Ak

´
< �2 if k � mi C 1 and ` � ni C 1,

> 2 otherwise.
(37)

Although the proof is not difficult, we prefer to postpone it to §5.4. Recall from (30)
that the sequences .ni / and .mi / are strictly increasing. Then it follows from (37)
that .A; B; C.ti // and .A; B; C.tj // do not belong to the same connected component
of H if i ¤ j . This proves assertion (iii) of the proposition.

At last, by (37) again, for every i there exists si between ti and tiC1 such that
tr C.si /B

ni C1Ami C1 D 0, so .A; B; C.si // belongs to the elliptic locus. This proves
the last assertion of the proposition. �

Remark 4.19. With a little additional work, one can find the unstable and stable cores
for .A; B; C.ti //; they are given by the subintervals below (again we write n D ni ,
m D mi , C D C.ti / for simplicity):

ŒuB ; u.BnC1AmC1C /� � I �
n ; Œs.BnC1AmC1C /; C �1sA� � QJn;

ŒBnAmC uB ; u.BnAmC1CB/� � In�1; Œs.BnAmC1CB/; B�1C �1sA� � QJn�1;

� � � � � �
ŒBAmC uB ; u.BAmC1CBn/� � I0; Œs.BAmC1CBn/; B�nC �1sA� � QJ0;

ŒAmC uB ; u.AmCBnC1A/� � J0; Œs.AmCBnC1A/; A�1B�nC �1sA� � QI0;

� � � � � �
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ŒAC uB ; u.ACBnC1Am/� � Jm�1; Œs.ACBnC1Am/; A�mB�nC �1sA� � QIm�1;

ŒC uB ; u.CBnC1AmC1/� � Jm; Œs.CBnC1AmC1/; sA� � QI �
m;

ŒCBnAmC uB ; u.AmC1CBnC1/� � V; Œs.AmC1CBnC1/; C �1A�mB�nC �1sA� � zV :

In particular, the rank of the cores for the component Hi is mi C ni C 3; so we get
another proof that Hi ¤ Hj if i ¤ j .

5. Combinatorial multicone dynamics

5.1. The setting

5.1.1. A pair of combinatorial multicones is a finite cyclically ordered set M which
is partitioned into 2 disjoint subsets Ms , Mu of the same cardinality which are met
alternately according to the cyclic ordering. The subset Ms is the stable combinatorial
multicone, the subset Mu is the unstable combinatorial multicone in the pair. The
integer q D #Ms D #Mu D 1

2
#M is the rank of M .

5.1.2. A correspondence on M is a subset of M �M .
Given two correspondences C , C 0 on M , their product C B C 0 is defined by

C B C 0 D f.x; z/I there exists y 2M such that .x; y/ 2 C , .y; z/ 2 C 0g:
This composition law is obviously associative; the diagonal in M �M is an identity
(both left and right). Thus correspondences form a monoid.

5.1.3. Let C be a correspondence on M . We say that C is monotonic if the following
properties hold:

� C � .Ms �Ms/ t .Mu �Mu/;
� C \.Ms�Ms/ is the graph f.Cs.xs/; xs/I xs 2Msg of a map Cs W Ms !Ms;
� C\.Mu�Mu/ is the graph f.xu; Cu.xu//I xu 2Mugof a map Cu W Mu !Mu;
� C can be endowed with a cyclic ordering such that the element next to .x; y/

is either .xCC; y/ or .xC; yC/ or .x; yCC/, where xC (resp. yC, xCC, yCC)
denotes the element next to x (resp. to y, xC, yC).

Observe that the cyclic ordering on C is uniquely defined by the latter property:
if for instance .x; y/ 2 Mu �Mu, then either xC belongs to the image of Cs and
the next element is .xC; yC/, or it is not the case and the next element is .xCC; y/.
Similarly, if .x; y/ 2 Ms �Ms then the next element is .xC; yC/ if yC 2 Im Cu,
and .x; yCC/ otherwise.

The last condition (existence of the cyclic ordering) in the definition of mono-
tonicity may be reformulated as follows:
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� for .xu; yu/ 2 C \ .Mu �Mu/ we must have xC
u D Cs.yC

u / if xC
u 2 Im Cs

and yu D Cu.xCC
u / if xC

u 62 Im Cs;
� for .xs; ys/ 2 C \ .Ms �Ms/ we must have yC

s D Cu.xC
s / if yC

s 2 Im Cu and
xs D Cs.yCC

s / if yC
s 62 Im Cu.

Obviously, a monotonic correspondence must satisfy

#C D #M D 2 rk.M /;

1 � # Im Cs D # Im Cu � rk.M /:

5.1.4. Examples
� The diagonal (or identity) correspondence is monotonic.
� Let as 2Ms , au 2Mu; set

Cas ;au
DMu � faug t fasg �Ms

(i.e., Cs , Cu are the constant maps with values as , au respectively). This cor-
respondence is monotonic and is called a constant correspondence (with values
as , au). The left or right composition of a monotonic correspondence with any
constant correspondence is a constant correspondence.

� See Figures 11 and 12 for more examples.

5.1.5. Elementary properties

5.1.5.1. The composition C B C 0 of monotonic correspondences is monotonic.

Proof. Let Cs , Cu, C 0
s , C 0

u be the maps associated with C , C 0. From the definition
of the composition law, we see that C B C 0 � .Ms �Ms/ [ .Mu �Mu/ with

.C B C 0/ \ .Ms �Ms/ D f.Cs B C 0
s.xs/; xs/I xs 2Msg;

.C B C 0/ \ .Mu �Mu/ D f.xu; C 0
u B Cu.xu//I xu 2Mug:

Let .xu; zu/ 2 .C BC 0/\ .Mu �Mu/; set yu D Cu.xu/, so we have zu D C 0
u.yu/.

� If xC
u 62 Im Cs , then also xC

u 62 Im Cs B C 0
s and we have yu D Cu.xCC

u /,
zu D C 0

u B Cu.xCC
u /.

� Assume xC
u 2 Im Cs; then xC

u D Cs.y/ if and only if y 2 Ms is between
yu D Cu.xu/ and Cu.xCC

u /. If no such y belongs to Im C 0
s , we must have

C 0
u.Cu.xCC

u // D C 0
u.Cu.xu//:

Otherwise, let ys be the first y in Im C 0
s between yu and Cu.xCC

u /; we have

C 0
u.y�

s / D C 0
u.Cu.xu// D zu; ys D C 0

s.zC
u /; xC

u D Cs.C 0
s.zC

u //:
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A

B

Figure 11. Two (constant) monotonic correspondences A and B (related to a free uniformly
hyperbolic pair). The rank of M is 2. The borders of the square should be identified in a
torus-like way. Circles and squares denote points in Mu �Mu and Ms �Ms , respectively.

A

B

Figure 12. Two monotonic correspondences A and B (related to the situation of Figure 2). The
rank of M is 5.

We have checked the first half of the condition for the existence of the cyclic
ordering on C B C 0; the other half is checked in a symmetric way. �

5.1.5.2. We have seen that
# Im Cs D # Im Cu:

In particular, Cs is a constant map iff Cu is a constant map; in this case, the values of
Cs and Cu are independent.

However, when Cs is not a constant map, there is at most one monotonic corre-
spondence C such that C \ .Ms �Ms/ is the graph of Cs . (And similarly when we
exchange the roles of Cs and Cu.) More precisely, such a monotonic correspondence
exists if and only if the map Cs is monotonic (increasing) in the following sense: For
any xs 2 Ms , either Cs.xCC

s / D Cs.xs/ or there is no point of the image of Cs

strictly between Cs.xs/ and Cs.xCC
s /; we then have xC

s D Cu.xu/ for xu 2 Mu

between Cs.xs/ and Cs.xCC
s /.
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5.2. Free monoids of monotonic correspondences

5.2.1. We have seen that the monotonic correspondences on a pair of combinatorial
multicones M DMs tMu form a monoid that we denote by C.M /.

Let N � 1 and let FN be the free monoid on N generators. Let ˆ W FN ! C.M /

be a morphism, uniquely determined by the images C .1/, …, C .N / of the canonical
generators of FN .

5.2.2. The morphism is called hyperbolic if there exists ` � 1 such that the image
of any word of length � ` in the generators is a constant correspondence.

5.2.3. The morphism is called tight if we have

N[
iD1

Im C .i/
u DMu and

N[
iD1

Im C .i/
s DMs:

A justification for this definition and terminology is the following: assume for
instance that some x0

u 2 Mu does not belong to any Im C
.i/
u , 1 � i � N ; then we

have
C .i/

s ..x0
u/�/ D C .i/

s ..x0
u/C/ for all 1 � i � N .

Consider the pair of combinatorial multicones M 0 DM 0
s tM 0

u where M 0
u DMu X

fx0
ug and M 0

s is deduced from Ms by identifying .x0
u/� with .x0

u/C; M 0 is equipped
with the obvious cyclic ordering. One can define in an obvious way correspondences
C .i/0, 1 � i � N on M 0, and the study of the morphism ˆ W FN ! C.M / reduces
to a morphism ˆ0 W FN ! C.M 0/ with a smaller pair of combinatorial multicones.

5.2.4. We would like to analyze tight hyperbolic morphisms.
For N D 1, a morphism is tight iff the correspondence C .1/ is invertible, and then

it cannot be hyperbolic except in the trivial case where the rank is 1.
In §5.5, we will determine all tight hyperbolic morphisms when N D 2.

5.3. Relation with matrices. Let us see how a uniformly hyperbolic N -tuple of
matrices induces a tight hyperbolic morphism.

Let .A1; : : : ; AN / 2 SL.2; R/N be uniformly hyperbolic. Let U and S be re-
spectively the unstable and stable cores. Let Mu, resp. Ms , be the set of connected
components of U , resp. S . Give M DMu tMs the cyclic order induced from P 1.
Then M is a pair of combinatorial multicones.

For each i D 1; : : : ; N , let C .i/ be the subset of .Mu�Mu/t .Ms�Ms/ formed
by the pairs .x; y/ such that Ai .x/ \ y ¤ ¿.

Lemma 5.1. Each C .i/ is a monotonic correspondence. Moreover, the morphism
ˆ W FN ! C.M / determined by C .1/, …, C .N / is tight and hyperbolic.
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(The same ˆ could also be obtained from a tight multicone M and its dual P 1X SM
in an obvious way, see Proposition 2.8.)

Proof of the lemma. Fix i , and let us show that C .i/ is monotonic. First, if .xu; yu/ 2
C .i/ \ .Mu �Mu/ then Ai .xu/ � yu, so xu uniquely determines yu. Write yu D
C

.i/
u .xu/. Analogously, if .x; y/ 2 C .i/ \ .Ms �Ms/ then A�1

i .ys/ � xs , so ys

determines xs D C
.i/
s .ys/.

Next, let .xu; yu/ 2 C .i/ \ .Mu �Mu/. In the case that xC
u 62 Im C

.i/
s then we

must have C
.i/
u .xCC

u / D yu. (Because if C
.i/
u .xCC

u / ¤ C
.i/
u .xu/ then there would

exist a point in the unstable core S between the intervals C
.i/
u .xu/ and C

.i/
u .xCC

u /;
this point would be sent by A�1

i into a point in S between xu and xCC
u , and hence

in xC
u , contradicting the fact that xC

u 62 Im C
.i/
s .) And in the case that xC

u 2 Im C
.i/
s

then we must have C
.i/
s .yC

u / D xC
u . (Indeed, xC

u is the C
.i/
s image of some zs; if

zs D yC
u we are done; otherwise yC

u is between the U -interval yu and S -interval zs;
then the interval A�1

i .yC
u / is between A�1

i .yu/ � xu, and A�1
i .zs/ � xC

u , and so it

must be contained in the interval xC
u , showing that xC

u D C
.i/
s .yC

u /.) This proves
“one half” of the monotonicity of C .i/, and the other half is completely analogous.

The induced morphism ˆ is clearly tight, while hyperbolicity follows from Propo-
sition 2.5. �

In view of the lemma, we call ˆ the morphism induced by .A1; : : : ; AN /. Exam-
ples from Figures 11 and 12 are induced by matrices.

Sometimes we call these data (that is, the morphism ˆ) the combinatorics of
.A1; : : : ; AN /. The combinatorics is an invariant in the sense that in remains the
same inside each connected component of H . (More precisely, if two N -tuples
belong to the same connected component then they induce conjugate morphisms.)

Let us very briefly return to the topic of the boundary of the hyperbolic compo-
nents:

Theorem 5.2. Non-principal components of H with different combinatorics have
disjoint boundaries.

Proof. For each N -tuple in the boundary of a non-principal component H , the limit
cores are defined (by Propositions 4.9 and 4.13). These limit cores induce a tight
hyperbolic morphism ˆ in an obvious way. In fact ˆ is the same (ie, conjugate to
the) morphism determined by the component H itself. Now, if the N -tuple belongs
also to the boundary of another component H1, then the limit cores relative to H1

are exactly the same as before, by Proposition 4.14. It follows that H and H1 have
the same combinatorics. �
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5.4. Winding numbers

5.4.1. The winding numbers for a uniformly hyperbolic N -tuple. As mentioned
above, the combinatorics ˆ W FN ! C.M / is an invariant on H . A much more
elementary invariant was introduced in [13]; it is the map � W FN ! fC1;�1g that
gives the signs of the traces.

Here we will introduce another elementary (in the sense that it does not depend
on the multicones) invariant called the winding number; it is a map n W FN ! Z.

Fix a cyclic order on P 1, and identify P 1 with R=Z via an orientation-preserving
homeomorphism. So any A 2 SL.2; R/ induces an orientation-preserving homeo-
morphism A W R=Z ! R=Z. Then we can lift A with respect to the covering map
R! R=Z and obtain a homeomorphism OA W R! R.

Now, let a uniformly hyperbolic N -tuple .A1; : : : ; AN / be given. Since each Ai

is hyperbolic, it has a unique lift OAi whose graph intersects the diagonal of R2. Given
a word ! D Aij : : : Ai1 , its winding number n.!/ is defined as the only integer n

such that
OAij B � � � B OAi1.x0/ D x0 C n for some x0 2 R.

It is clear that the winding number map n W FN ! Z is an invariant, ie, it depends
only on the connected component of H the hyperbolic N -tuple is in.

Let us see that the trace signs � essentially depend only on n. More precisely,
if tr A1, …, tr Aj are all positive, then the sign of tr Aij : : : Ai1 is .�1/n, where n is
the winding number of the word. To see this fact, first notice that if we substitute
the covering map R ! R=Z D P 1 with the double covering S1 ! P 1 along the
definition of the winding number, then we obtain the invariant n mod 2. And the
relation between that invariant and signs of eigenvalues is transparent.

To give an example, let us compute the winding numbers for the positive free
component of SL.2; R/2. Consider a word ! in the letters A and B that contains
both (otherwise the winding number is zero). Notice that the winding number of a
word is left invariant by cyclic permutations. (That is a general fact.) So we can
assume the word is of the form ! D Ak1B`1Ak2B`2 : : : AkmB`m , with all ki , `i

positive. Then the winding number of ! is �m. (The winding numbers are opposite
for the free component obtained from the positive by conjugation with an orientation-
reversing linear map.)

Let us pause our general discussion to give the:

Completion of the proof of Proposition 4.18. We need to prove (37). Let k, ` � 0

and consider the matrix C.ti /B
`Ak . Notice that its expanding direction is in V if

` � ni and in Jmi
otherwise. Looking at the action of the lifts on that fixed point, we

see that if k � mi C 1 and ` � ni C 1 then the winding number of is �1, otherwise
it is zero. �
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5.4.2. Combinatorial definition of winding numbers. Fix a pair of combinatorial
multicones M , and let q be its rank. Identify M with Z=2qZ via some bijection that
preserves the cyclic orders; such identification will remain fixed in the sequel. Let
x 2 Z 7! Nx 2 Z=2qZ be the quotient map.

A subset yC of Z2 is called a lifted correspondence if there exists a monotonic
correspondence C on M such that the following properties hold:

� if .x; y/ 2 yC then . Nx; Ny/ 2 C ;
� there is a bijection between Z and yC such that if we endow yC with the order

induced from Z then the element next to .x; y/ is .xC 2; y/, or .xC 1; yC 1/,
or .x; yC 2/, according to whether the element in C next to . Nx; Ny/ is . NxCC; Ny/,
or . NxC; NyC/, or . Nx; NyCC/.

We also say yC is a lift of C . Notice yC is invariant by the translation of Z2 by
.2q; 2q/, in other words, yC D yC C .2q; 2q/. Also notice that if yC , yC1 are two lifts
of the same monotonic correspondence C then there is an unique n 2 Z such that
yC1 D yC C .2qn; 0/.

Composition of lifted correspondences is defined in a similar manner as for mono-
tonic correspondences. Associativity holds (the proof is similar). Also, the composi-
tion of lifts is a lift of the composition of two monotonic correspondences.

If a monotonic correspondence C is hyperbolic (in the sense that some power of it
is a constant) then for every lift yC of C there is a unique n 2 Z such that yC contains
a point of the form .x; x C 2qn/; such number n is called the height of yC .

Now let ˆ W FN ! C.M / be a tight hyperbolic morphism. Let a1; : : : ; aN be
the canonical generators of FN , and let the correspondences C .1/; : : : ; C .N / be their
respective images by ˆ. Let yC .i/ be the unique lift of C .i/ of height zero.

The winding number n.!/ of a word ! D aij : : : ai1 in FN is the height of the

lifted correspondence yC .ij / B � � � B yC .i1/. The winding number of the empty word is
defined as zero.

(Notice that winding numbers do not depend on the identification between M and
Z=2qZ.)

It is easy to see that if the morphism ˆ W FN ! C.M / is induced by a hyperbolic
N -tuple, then our two definitions of winding numbers give the same results.

5.4.3. A non-vanishing property

Lemma 5.3. If the rank of M is bigger than 1 then there is a word ! such that
n.!/ D ˙1.

Proof. It follows immediately from the definition of the winding number that, for
any word ! and any letter ai , one has

jn.!ai / � n.!/j � 1; jn.ai!/ � n.!/j � 1:
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On the other hand, let e1, e2, e3, e4 be elements of M such that

e1; e3 2Ms; e2; e4 2Mu; e1 < e2 < e3 < e4 < e1:

As ˆ is hyperbolic and tight, there exist words !12 and !34 such that the image of
!12 is the constant correspondence Ce1e2

and the image of !34 is Ce3e4
. We claim

that
n.!12!34/ D n.!12/C n.!34/ � 1: (38)

Indeed, let yCe1e2
and yCe3e4

be the lifts of Ce1e2
and Ce3e4

whose heights are n.!12/,
n.!34/, respectively. Take integers k1 < k2 < k3 < k4 such that ki D ei and
k4 � k1 < 2q. Then�

k2; k4 C 2q.n.!34/ � 1/
� 2 yCe3e4

and
�
k4; k2 C 2qn.!12/

� 2 yCe1e2
:

Therefore �
k2; k2 C 2q.n.!12/C n.!34/ � 1/

� 2 yCe1e2
B yCe3e4

;

proving (38). The lemma now follows at once. �

Lemma 5.3 has the following consequence: If we restrict ourselves to N -tuples
.A1; : : : ; AN / with tr A1, …, tr AN all positive, then there is a unique component of
H where all products of Ai ’s have positive trace, namely the principal component.
This answers positively Question 10 of [13].

5.5. Tight hyperbolic morphisms for N D 2. The aim of this section is to prove
the following result:

Proposition 5.4. Every tight hyperbolic morphism ˆ W F2 ! C.M / is induced by
some uniformly hyperbolic pair of matrices.

5.5.1. When the rank of M is 1, there is only one monotonic correspondence on M ,
namely the identity (ie, the diagonal in M �M ). Therefore, for any N � 1, there is
exactly one morphism ˆ W FN ! C.M /. It is tight and hyperbolic.

From now on, we assume that the rank q of M is at least 2.

5.5.2. Fix some tight hyperbolic morphism ˆ W F2 ! C.M / and write A, B instead
of C .1/, C .2/ for the images of the generators of F2.

Lemma 5.5. There exist two distinct points x
.0/
s , x

.1/
s in Ms such that

As.x.0/
s / D As.x.1/

s /; Bs.x.0/
s / D Bs.x.1/

s /:

Similarly, there exist two distinct points x
.0/
u , x

.1/
u in Mu such that

Au.x.0/
u / D Au.x.1/

u /; Bu.x.0/
u / D Bu.x.1/

u /:
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Remark 5.6. We will see later that fx.0/
s ; x

.1/
s g, fx.0/

u ; x
.1/
u g are uniquely determined

by these properties.

Proof of the lemma. We prove the first half of the lemma. Take two distinct points xs ,
x0

s in Ms . If the conclusion of the lemma does not hold, one can construct inductively
arbitrarily long words w such that

Œˆ.w/�s.xs/ ¤ Œˆ.w/�s.x0
s/;

which contradicts hyperbolicity. �

5.5.3. Let x
.0/
s , x

.1/
s , x

.0/
u , x

.1/
u be as in Lemma 5.5. Renaming if necessary x

.0/
s and

x
.1/
s , we can assume that the image of Au contains a point between x

.0/
s and x

.1/
s .

Lemma 5.7. The image of Au is the set of points in Mu between x
.0/
s and x

.1/
s . The

image of Bu is the set of points in Mu between x
.1/
s and x

.0/
s .

Proof. As As.x
.0/
s / D As.x

.1/
s /, it follows from the definition of monotonicity that

there cannot be any point of the image of Au between x
.1/
s and x

.0/
s . Therefore, as

Mu D Im Aut Im Bu, every point in Mu between x
.1/
s and x

.0/
s belongs to the image

of Bu. Exchanging Au, Bu we get all the conclusions of the lemma. �

In the same manner, after renaming if necessary x
.0/
u , x

.1/
u , we see that Im As is

the set of points in Ms between x
.1/
u and x

.0/
u , while Im Bs is the set of points in Ms

between x
.0/
u and x

.1/
u .

It follows immediately from Lemma 5.7 that x
.0/
s , x

.1/
s , x

.0/
u , x

.1/
u are now uniquely

defined.

5.5.4. Next we identify invariant intervals for the maps Au, Bu, As , Bs .

Lemma 5.8. We have Au.Œx
.0/
u ; x

.1/
u �/ � Œx

.0/
u ; x

.1/
u � and similarly Bu.Œx

.1/
u ; x

.0/
u �/ �

Œx
.1/
u ; x

.0/
u �, As.Œx

.1/
s ; x

.0/
s �/ � Œx

.1/
s ; x

.0/
s �, Bs.Œx

.0/
s ; x

.1/
s �/ � Œx

.0/
s ; x

.1/
s �.

Proof. We prove the first statement. As the image of AnC1
u is contained in the image

of An
u, we deduce from the hyperbolicity of ˆ that there exists x� 2 Mu such that

Au.x�/ D x� and Im An
u D fx�g for large n. If one had x� 62 Œx

.0/
u ; x

.1/
u � then

one would have A�1
u .x�/ D fx�g, which is not compatible with Im An

u D fx�g.
Therefore x� 2 Œx

.0/
u ; x

.1/
u � and Au.Œx

.0/
u ; x

.1/
u �/ D fx�g. �
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Fix As

x
.0/
s

x
.0/
u

Fix Au Fix Bs

x
.1/
u

x
.1/
s

Fix Bu

Figure 13. The pair of multicones M for p=q D 2=5.

5.5.5. Recall that we have denoted q D #Mu D #Ms the rank of M . Let us denote

p D # Im Bu D # Im Bs; hence q � p D # Im Au D # Im As:

If q D 2 then p D 1; both A and B are constant correspondences and these are the
dynamics associated to the free components. We will therefore assume that q > 2.
By exchanging A and B we can assume that p � q=2.

Lemma 5.9. One has p < q=2 and x
.0/
u , x

.1/
1 2 Im Au.

Proof. Im Au and Œx
.1/
u ; x

.0/
u �\Mu are intervals in Mu with respective cardinalities

q�p and q�pC1; therefore at least one of the two points x
.0/
u , x

.1/
u belongs to Im Au,

and exactly one if q D 2p. Assume that only one of the points x
.0/
u , x

.1/
u belongs to

Im Au. Starting with x0, x0
0 2 Mu with x0 ¤ x0

0, fx0; x0
0g ¤ fx.0/

u ; x
.1/
u g, we can

construct sequences .xn/n�0, .xn/n�0 in Mu such that xn ¤ x0
n and xn D Cnxn�1,

x0
n D Cnx0

n�1 for some Cn 2 fA; Bg: indeed one can never have fxn�1; x0
n�1g ¤

fx.0/
u ; x

.1/
u g as both xn�1, x0

n�1 belong to Im Cn�1. Such sequences would contradict
hyperbolicity. Therefore the lemma is proved. �

5.5.6. Let us summarize what we know so far about the correspondences A, B . (See
Figure 14 for p=q D 2=5.)

As a subset of M �M , A is made of

• a horizontal segment from .x
.0/
u ; Fix Au/ to .x

.1/
u ; Fix Au/;
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A

B

Fix AuFix Au

Fix Bs

x
.1/
u

Fix Bu

Fix As x
.0/
u

Fix Bs

x
.1/
s

Fix Bu

Fix As

x
.0/
s

Fix Au

Figure 14. The correspondences A and B for p=q D 2=5.

• a vertical segment from .Fix As; x
.1/
s / to .Fix As; x

.0/
s /;

• two diagonal segments from .x
.1/
u ; Fix Au/ to .Fix As; x

.1/
s / and from .Fix As; x

.0/
s /

to .x
.0/
u ; Fix Au/.

Here we have

x.0/
u < x.1/

u < x.1/
s < x.0/

s < x.0/
u ;

x.0/
u � Fix Au � x.1/

u ; x.1/
s � Fix As � x.0/

s :

Similarly, B is made of

• a horizontal segment from .x
.1/
u ; Fix Bu/ to .x

.0/
u ; Fix Bu/;

• a vertical segment from .Fix Bs; x
.0/
s / to .Fix Bs; x

.1/
s /;

• two diagonal segments from .x
.0/
u ; Fix Bu/ to .Fix Bs; x

.0/
s / and from .Fix Bs; x

.1/
s /

to .x
.1/
u ; Fix Bu/.

We also have

x.1/
s < Fix Bu < x.0/

s ; x.0/
u < Fix Bs < x.1/

u :

We would like to show that q and p are relatively prime and that .A; B/ is obtained
from the component described in Subsection 3.8 (or its mirror image). This will be
done by induction on q, the case q D 2 having been checked already.

Changing the cyclic orientation if necessary, we may also assume that

x.0/
u � Fix Au < Fix Bs < x.1/

u :
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Observe that the pair .A; B/ is completely determined by the following data (besides
p, q):

� the number Np0 WD #.Mu \ Œx
.0/
u ; Fix Au//;

� the number Nq0 WD Np0 C #.Ms \ Œx
.0/
s ; Fix Bs//;

� the number ı WD #.Fix Au; Fix Bs/.

Indeed these numbers determine the relative positions of x
.0/
u , x

.1/
u , x

.0/
s , x

.1/
s , Fix Au,

Fix As , Fix Bu, Fix Bs on M . Setting Np1 D p � Np0, Nq1 D q � Nq0, we have

Np1 D #.Mu \ ŒFix Au; x.1/
u //;

Nq1 D Np1 C #.Ms \ ŒFix Bs; x.1/
s //:

For the component described in Subsection 3.8, one checks that Np0 D p0, Nq0 D q0,
Np1 D p1, Nq1 D q1, ı D 0, where p=q is the Farey center of the Farey interval
Œp0=q0; p1=q1�. We have to prove these relations in our case.

5.5.7. From A, B we will construct a new par of combinatorial multicones M 0 D
M 0

s tM 0
u of rank q0 WD q � p, and two monotone correspondences A0, B 0 on M 0

which generate a tight hyperbolic morphism. Applying the induction hypothesis will
allow us to conclude.

We define M 0 WDM 0
s tM 0

u where M 0
u WD Im Au D .x

.0/
s ; x

.1/
s / \Mu and M 0

s

is obtained from Ms by collapsing the interval Œx
.1/
s ; x

.0/
s �\Ms into a point denoted

by Nx0. We write � for the canonical map from Ms to M 0
s . Observe that As is constant

on Œx
.1/
s ; x

.0/
s �\Ms , with value Fix As . Therefore the composition As B ��1 is well

defined and is a bijection from M 0
s to Im As . (This shows that the asymmetry of the

definition of M 0 is only apparent.)
We equip M 0 with the obvious cyclic order inherited from M . We define:

A0
u D AujM 0

u; A0
s D � B As B ��1;

B 0
u D Au B BujM 0

u; B 0
s D � B Bs B As B ��1:

One checks easily that this defines monotone correspondences A0, B 0 on M 0. Let
ˆ0 W F2 ! C.M 0/ be the morphism generated by A0, B 0.

Let us check that ˆ0 is hyperbolic: for any long enough word w0 in A0, B 0, the
unstable part w0

u is an even longer word in Au, Bu; as ˆ is hyperbolic, the image is
reduced to a point. This proves that w0 is a constant correspondence.

Let us check that ˆ0 is tight. Any x0
u 2 M 0

u can be written as Au.xu/ with
xu 2 Mu; as ˆ is tight, either xu 2 M 0

u and x0
u 2 Im A0

u or xu 2 Im Bu; as
Bu.M 0

u/ D Im Bu, we have x0
u 2 Im B 0

u in this case. Similarly, let x0
s 2 M 0

s; if
x0

s 2 �.Im As/ then x0
s 2 Im A0

s; if x0
s 2 �.Im Bs/ then, as Im Bs D Im BsAs , we

have x0
s 2 Im B 0

s . Therefore ˆ0 is tight.
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As Au is injective on .x
.1/
s ; x

.0/
s / \Mu and the image of this set is disjoint from

Au.Im Au/, we have

# Im A0
u D # Im Au � p D q � 2p;

and therefore (as Im A0
u \ Im B 0

u D ¿)

p0 WD Im B 0
u D p; # Im A0

u D q0 � p0:

We will apply the induction hypothesis to the tight hyperbolic morphism ˆ0 and
therefore we have to identify the parameters Np0

0, Nq0
0, ı0 for this morphism.

We have

A0
u.x.0/

u / D A0
u.x.1/

u / D Fix Au;

B 0
u.x.0/

u / D B 0
u.x.1/

u /;

therefore Fix A0
u D Fix Au and Np0

0 D Np0. Let x
0.0/
s , x

0.1/
s be the points in Ms such

that As.x
0.0/
s / D x

.0/
s , As.x

0.1/
s / D x

.1/
s (if Fix As ¤ x

.i/
s then x

0.i/
s is uniquely

determined by this condition; if Fix As D x
.i/
s then we take x

0.i/
s D Fix As). It is

easy to see that �.x
0.0/
s / ¤ �.x

0.1/
s /. We have then

A0
s.�.x0.0/

s // D A0
s.�.x0.1/

s // D Nx0;
B 0

s.�.x0.0/
s // D B 0

s.�.x0.1/
s // D �.Fix Bs/:

This shows that Nq0
0 D Nq0� Np0, Fix B 0

s D �.Fix Bs/ and so ı0 D ı. From the inductive
hypothesis, we must have ı0 D 0, Nq0

0 D q0
0, Np0

0 D p0
0, where Œp0

0=q0
0
; .p0�p0

0
/=.q0�q0

0
/� is

the Farey interval with center p0=q0. But then we have also ı D 0, Np0 D p0, Nq0 D q0.
This is the end of the proof of Proposition 5.4.

5.6. Non-realizable multicone dynamics. Here we will show that Proposition 5.4
does not extend to every N :

Proposition 5.10. There exists a tight hyperbolic morphism ˆ W FN ! C.M / which
is not induced by any uniformly hyperbolic N -tuple.

Recall our definition of cross-ratio (2) from §2.2. It may be useful to bear in mind
that 1 < Œa; b; c; d � < 1 if a < b < c < d . < a/ (where < is the cyclic ordering
on R [ f1g). The following lemma compares certain cross-ratios:

Lemma 5.11. Take eight distinct points in P 1 with

a0 < a < b < b0 < c0 < c < d < d 0 . < a0/:

Then Œa0; b0; c0; d 0� < Œa; b; c; d �.
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a

bc

d

a0

b0c0

d 0

Figure 15. Cross-ratio comparison.

Proof. Using an orientation-preserving projective chart (see §2.2) we can identify
P 1 with the extended line R [ f1g, and also assume that d 0 D1. Then

Œa; b; c; d � D c � a

b � a
� d � b

d � c
>

c � a

b � a
>

c � a0

b � a0 >
c0 � a0

b0 � a0 D Œa0; b0; c0; d 0�: �

Proof of Proposition 5.10. Consider a pair of combinatorial multicones M DMs t
Mu of order 15. Write the unstable combinatorial multicone as

Mu D f˛ < a < b < ! < c < d < ˇ < ˇ0 < d 0 < o < a0 < !0 < b0 < c0 < ˛0 < ˛g:

Let maps Au, Bu, Cu W Mu !Mu be defined by:

xu ˛ a b ! c d ˇ ˇ0 d 0 o a0 !0 b0 c0 ˛0

Au.xu/ ! ˇ ˛ ! ! ! ! ! ! ! ! ! ! ! !

Bu.xu/ a0 a0 b0 c0 c0 d 0 d 0 o o o o o o o o

Cu.xu/ !0 !0 !0 !0 !0 !0 !0 !0 !0 !0 !0 !0 ˛0 ˇ0 !0

The maps above are monotonic in the sense of §5.1.5.2. Therefore there exist unique
correspondences A, B , C on M whose respective u-maps are Au, Bu, Cu, respec-
tively.

Choose some constant correspondences C .4/, …, C .N / such that the morphism
ˆ determined by A, B , C , C .4/, …, C .N / is tight.

Let us see that the morphism is hyperbolic. We only need to consider products
of the correspondences A, B , C , because the others are constant. Inspecting the
following diagram, one sees that any product of length � 4 of the maps Au, Bu, Cu
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a

bc

d

a0 b0

c0d 0

˛ˇ

˛0ˇ 0

!

!0

o

Q

AQ

BQ

CBQ

Figure 16. The unstable combinatorial multicone. We will compare cross-ratios of the four
rectangles Q, AQ, BQ, CBQ.

is constant:

f˛; !; ˇg ��

��

���
�

�
�

�
�

�
�

�
�

�
f!g

Mu

Au

����������������� Bu ��

Cu ���������� fa0; b0; c0; d 0; og

�����������������
��

���
�
�

fog

f˛0; !0; ˇ0g

�����������������������

��

��������� f!0g

Since any correspondence is constant iff so is its unstable map, we conclude that the
morphism ˆ is hyperbolic.

By contradiction, assume that the morphism ˆ is induced by some hyperbolic
N -tuple. Then there is a tight multicone composed of 15 intervals, and each element

 2Mu corresponds to one of those intervals, say I� .

With abuse of notation, let A, B , C indicate the first three matrices of the N -tuple.
Choose four points in the circle: a 2 Ia, b 2 Ib , c 2 Ic , d 2 Id . Then their images
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by A belong respectively to Iˇ , I˛ , I! , I! . So

A.b/ < a < b < A.c/ < A.d/ < c < d < A.a/ . < A.b//;

and therefore Lemma 5.11 gives

Œb; c; d ; a� D ŒA.b/; A.c/; A.d/; A.a/� < Œa; b; c; d �:

On the other hand, defining a0 D B.a/ 2 Ia0 , b0 D B.b/ 2 Ib0 , c0 D B.c/ 2 Ic0 ,
d 0 D B.d/ 2 Id 0 , then

C.a0/ < b0 < c0 < C.b0/ < C.c0/ < d 0 < a0 < C.d 0/ . < C.a0//;

and so, using Lemma 5.11 again,

Œa; b; c; d � D Œa0; b0; c0; d 0� < Œb0; c0; d 0; a0� D Œb; c; d ; a�:

We have reached a contradiction. �

5.7. Non-linear realization of multicone dynamics. We will now see that any
combinatorial multicone dynamics has a non-linear realization.

Given N homeomorphisms f1, …, fN W P 1 ! P 1, we define a skew-product
homeomorphism F W N Z � P 1 ! N Z � P 1 over the shift � W N Z ! N Z by
.!; x/ 7! .�.!/; f!0

.x//.

Proposition 5.12. Let C .1/, …, C .N / be correspondences on a pair of combinatorial
multicones M . Then there exist

� orientation-preserving diffeomorphisms f1, …, fN W P 1 ! P 1,

� a family of disjoint closed intervals I� � P 1, for 
 2 M , such that the order
inherited from M is compatible with an orientation of the circle P 1

with the following properties:

(i) For each 
 2Mu, we have fi .I�/ b I
C

.i/
u .�/

and f 0
i jI� < 1.

(ii) For each 
 2Ms , we have f �1
i .I�/ b I

C
.i/
s .�/

and .f �1
i /0jI� < 1.

(iii) If F W N Z � P 1  - is the skew-product homeomorphism induced by the fi ’s
then its non-wandering set �.F / is the union of two disjoint compact F -in-
variant sets ƒs and ƒu, contained respectively in N Z �S

�2Ms
I� and N Z �S

�2Mu
I� .

(iv) If the morphism ˆ W FN ! C.M / induced by the correspondences C .i/’s is
hyperbolic then the F -invariant sets ƒu and ƒs are topologically transitive.

(v) If the morphism ˆ is tight then �.F / intersects N Z � I� for every 
 2M .
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Proof. Let C .1/; : : : ; C .N / be correspondences on a pair of multicones M .
Choose a family I� , indexed by 
 2 M , of disjoint closed intervals contained in

the circle P 1, all with the same positive length, and such that the order inherited from
M is compatible with an orientation of the circle.

Fix some i D 1, …, N . For each � 2 Im C
.i/
u , there exist a unique connected

component J
.i/
� of P 1 X F

�2Im C
.i/
s

I� that contains all the intervals Ix such that

.x; �/ 2 C .i/ �M �M . We have

P 1 D
G

�2Im C
.i/
s

I� t
G

�2Im C
.i/
u

J .i/
� : (39)

Analogously, for each 
 2 Im C
.i/
s , there exist a unique connected component J

.i/

�

of P 1 XF
�2Im C

.i/
u

I� that contains all the intervals Iy for which .
; y/ 2 C .i/. In
addition,

P 1 D
G

�2Im C
.i/
s

J
.i/

�
t

G
�2Im C

.i/
u

I�: (40)

Let fi W P 1 ! P 1 be an orientation-preserving diffeomorphism such that

fi

�
cl J .i/

�

� D I� for all � 2 Im C .i/
u ; fi .I�/ D cl J

.i/

�
for all 
 2 Im C .i/

s :

Then for each 
 2Mu, we have fi .I�/ � fi

�
cl J

.i/

C
.i/
u .�/

� D I
C

.i/
u .�/

. Also, fi can be

chosen to be linear in I� . Analogously, for each 
 2Ms we have f �1
i .I�/ � I

C
.i/
s .�/

,

and we can take f �1
i jI� linear. Then the maps fi satisfy properties (i) and (ii) of the

proposition.
Define two disjoint subsets of P 1 by S DF

�2Ms
I� and U DF

�2Mu
I� . Next

we claim that for any i ,

fi .P
1 X S/ � U; f �1

i .P 1 X U / � S: (41)

Indeed, if x 2 P 1 X S then by (39) x belongs to J
.i/
� for some � 2 Im C

.i/
u . In

particular, fi .x/ 2 I� , proving the first part of (41). The second part follows by
symmetry.

It follows from (41) that all points in N Z��
P 1X .U [S/

�
are wandering. Hence

assertion (iii) holds.
Now assume the morphism ˆ is hyperbolic. Given symbols i0, …, in�1, the set

fin�1
B � � � B fi0.P 1 X S/ is contained in the union of the intervals I� such that 


belongs to the image of C
.n�1/
u B � � � B C

.0/
u . So 
 becomes uniquely determined if n

is large enough. By the contraction property (i), we get that

dist
�
F n.!; x/; F n.!; y/

� �����!
n!C1 0 uniformly for ! 2 N Z, x, y 2 P 1 X S .
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Using this, it is easy to show that the F -invariant set
T

n�0 F n.N Z�U / is topologi-
cally transitive. In particular, this set must be equal to �.F /\ .N Z�U /, that is, ƒu.
Analogously, one shows that ƒs D T

n�0 F �n.N Z � S/ is topologically transitive.
This proves part (iv).

The simple proof of assertion (v) is left to the reader. �

6. Questions

The questions and problems proposed in [13] are solved for the full 2-shift, but for
the general case many questions remain unanswered. To summarize:

Question or Problem from [13] Full 2-shift General case

Q1 (trace signs) yes unknown

P1 (trace signs) easy now – use §3.8, §5.4 unknown

Q1’ (trace signs � principal) no no – see §5.4.3

P2 (principal) – unknown

Q2 (boundary) no no, if Q3’ is “yes” – see Theorem 4.1

Q3 (boundary) yes no (in general) – see Proposition 4.18

Q3’(boundary) yes unknown

Q4 (elliptic products) yes unknown

We will recall and discuss some of those questions, and also propose new ones.
We return to the general situation where † is some subshift of finite type, and H

is associated hyperbolic locus.

6.1. Boundaries of the components

Question 1. Are the boundaries of the connected components of H disjoint?

A result that goes in the direction of answering (positively) Question 1 is Theo-
rem 5.2.

Question 2 (Question 30 in [13]). Is the union of the boundaries of the components
equal to the boundary of H?

A positive answer to Question 2 would answer Question 2 from [13] negatively
(using Theorem 4.1).

Question 3. If � W Œa; b� ! SL.2; R/N is an analytic curve, does the set ��1.@H /

necessarily have countably many components?
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A negative answer to Question 3 would answer Question 2 negatively (because
the components of H are semialgebraic).

6.2. Elliptic products. Denote by E � SL.2; R/N the set of N -tuples such that
there exists a periodic point for the subshift over which the corresponding product is
an elliptic matrix.

It is shown in [13] that xE D H c .

Question 4 (Question 4 in [13]). Is H D Ec ? Equivalently, is @H D @E D
.H [ E/c ?

We remark that E is connected: see Proposition A.3 in the Appendix.

6.3. Unboundedness of the components. Let us say that a set Z � SL.2; R/N is
boundedmodulo conjugacy if there exists a compact set K � SL.2; R/N such that ev-
ery N -tuple in Z is of the form .RA1R�1; : : : ; RAN R�1/, for some .A1; : : : ; AN / 2
K and R 2 SL.2; R/. Otherwise, we say that Z is unbounded modulo conjugacy.

Question 5. Is every connected component of H unbounded modulo conjugacy?

TheoremA.1 in theAppendix says that a set of N -tuples .A1; : : : ; AN / is bounded
modulo conjugacy iff the traces of Ai ’s and AiAj ’s are all bounded. Motivated by it,
we pose a stronger version of Question 5:

Question 6 (for full shifts). Are all functions tr Ai and tr AiAj unbounded in each
component?

If A is a uniformly hyperbolic N -tuple w.r.t. some subshift †, we define its (least)
hyperbolicity rate as

�.A/ D lim inf
n!1 min

˚ kAn.x/k1=nI x 2 † has period n
�
:

Of course, �.A/ > 1.

Question 7. Is � unbounded in each component?

A positive answer to Question 7 implies positive answers to Questions 5 (because
of Theorem A.1) and 6 (because �.A/ is a lower bound for the modulus of the trace
of any product of the matrices in the N -tuple A).

It is easy to see that � is unbounded in principal components (for full shifts, of
course). The case † D 2Z is also easily settled:

Proposition 6.1. For the case of the full 2-shift, the answer to Question 7 is positive.
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Proof. It suffices to see that � is unbounded on non-principal components.
First consider a free component H . Let † be the subshift on four symbols con-

sidered in §3.3. If .A; B/ 2 H , then .A; B; A�1; B�1/ is uniformly hyperbolic
with respect to †; see Lemma 3.7; let �†.A; B/ indicate the hyperbolicity rate of
.A; B; A�1; B�1/ with respect to †. It is easy to see that �† (and in particular, �) is
unbounded in H .

Now, consider any other component HF D F �1.H/, where F 2M. Given � >

1, take .A0; B0/ 2 H with �†.A0; B0/ > � , and let .A; B/ D F �1.A0; B0/ 2 HF .
In the notations of §3.4 we have that there exist c > 0 such that

kh!; .A0; B0/ik � c exp.� j!j/ for every ! 2 F2.

As in the proof of Proposition 3.5, it follows that

kh!; .A; B/ik � c exp
�
2�k� j!j� for any ! 2 F2

(where k depends only on F ). Therefore

�.A; B/ � lim inf
j!j!1

kh!; .A; B/ik1=j!j � exp
�
2�k�

�
:

Hence � is unbounded on HF . �

6.4. Topology of the components

Question 8. What are the possible homotopy types of the hyperbolic components?
What about the elliptic locus E?

In the case of the full 2-shift, each component has the homotopy type of a circle.
In Appendix A.2, we show that E is connected.

6.5. Combinatorial characterization of the components. Assume the subshift is
full in N letters.

An uniformly hyperbolic N -tuple induces a multicone M in the sense of Section 5,
and a tight hyperbolic morphism ˆ.

Recall that if two uniformly hyperbolic N -tuples belong to the same connected
component then they have the same combinatorics, in the sense the respective mor-
phisms ˆ are conjugate.

Question 9. Does the combinatorics characterize the connected components of H ,
modulo reflections .A1; : : : ; AN / 7! .˙A1; : : : ;˙AN /?

In the case † D 2Z, our description of the multicone dynamics (see §3.8) gives
a positive answer to Question 9.
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Appendices

A.1. A compactness criterion for finite families of matrices in SL.2 ; R/ modulo
conjugacy. Let K be a compact subset of SL.2; R/. Then there exists C D C.K/ >

0 such that, for any A, B 2 K,

j tr Aj � C; j tr ABj � C:

This also holds if A, B belong to some conjugate R�1KR, R 2 SL.2; R/. We prove
that the converse is true:

Theorem A.1. Let C > 0. There exists a compact set K D K.C / with the following
property: If A1, …, AN 2 SL.2; R/ satisfy

j tr Ai j � C; 1 � i � N; (42)

j tr AiAj j � C; 1 � i < j � N; (43)

then there exists R 2 SL.2; R/ such that RAiR
�1 2 K for 1 � i � N .

Remark A.2. It follows that if the inequalities (42), (43) are satisfied over a subset
Z of SL.2; R/N then there is a compact set K � SL.2; R/N such that the union of
conjugacy classes of elements of K covers Z. This result does not hold for infinite
families .Ai /i2N . More precisely, consider in SL.2; R/N the product topology. If
f W N ! N is any map, let A

f
i D

�
1 f .i/
0 1

�
. Let Z � SL.2; R/N be the set of

Af D .A
f
i /i2N for all possible f . We have tr A

f
i D tr A

f
i A

f
j D 2 for all i , j , f .

On the other hand, given any compact set K � SL.2; R/N , there exist ci > 0 such
that .Bi / 2 K implies kBik � ci for every i 2 N. Now, if f W N ! N is such
that f .i/=ci !1 then Af 2 Z does not belong to any conjugacy class of elements
of K.

Proof of Theorem A.1. Write

Ai D
�

xi yi

zi ti

�
:

We have

xi ti � yizi D 1 for all i; (44)

jxi C ti j � C for all i; (45)

jxixj C ti tj C yizj C yj zi j � C for all i < j: (46)

We want to find a common conjugacy after which all coefficients are bounded by
C1 D C1.C /.
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We start with a particular case.
Special case: Assume that we have moreover

jxi j � C2; for all i; (47)

for some C2 depending only on C . We will then conjugate all Ai by the same diagonal
matrix. Observe that from (44), (45), (46), (47), we get (for some C3 D C3.C /)

jti j � C3 for all i; (48)

jyizi j � C3 for all i; (49)

jyizj C yj zi j � C3 for all i < j: (50)

From (49), (50) we also get

jyiziyj zj j � C 2
3 for all i < j; (51)

jyizj j � C4 for all i; j: (52)

Let

R� D
�

� 0

0 ��1

�
; A0

i D R�AiR
�1
� D

�
xi �2yi

��2zi ti

�
:

From (52), we have
max

i
jyi j �max

j
jzj j � C4:

Thus we can choose � such that

max
i
j�2yi j � C

1=2
4 ;

max
i
j��2zi j � C

1=2
4 ;

which concludes the proof in the special case.

Let S� D
�

cos � sin �� sin � cos �

�
. Write S�AiS

�1
�
D

�
xi .�/ yi .�/
zi .�/ ti .�/

�
. We have

xi .�/ D xi cos2 � C ti sin2 � C .yi C zi / sin � cos �:

We want to prove that there exists C2 D C2.C / and � such that

jxi .�/j � C2 for all i: (53)

Indeed, in this case we are reduced to the special case above. From (45), we see that
(53) is equivalent toˇ̌̌

ˇxi cos 2� C yi C zi

2
sin 2�

ˇ̌̌
ˇ � C 0

2 for all i: (54)
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Observe that

x2
i .�/C y2

i .�/C z2
i .�/C t2

i .�/ D tr S� Ai
tAi S�1

�

does not depend on � . We can assume that

x2
1 C y2

1 C z2
1 C t2

1 � x2
i C y2

i C z2
i C t2

i for all i � 1: (55)

Choose � such that
x1 cos 2� C y1 C z1

2
sin 2� D 0: (56)

Replacing Ai by S�AiS
�1
�

, we can assume that

jx1j � C: (57)

We will show that (44), (45), (46), (56), (57) together imply (47). Actually, we only
need (46) for i D 1, i.e.,

jx1xi C t1ti C y1zi C yiz1j � C for all i > 1: (58)

Observe first that from (44), (45), (57) we get

jt1j � 2C; (59)

jy1z1j � 1C 4C 2: (60)

Replacing if necessary all Ai by tAi , we can assume that

jy1j � jz1j (61)

From (57), (59), (60), (61), we have

x2
1 C z2

1 C t2
1 � C5 D C5.C /: (62)

From (55), we then get

max .jxi j; jyi j; jzi j; jti j/ � jy1j C C6: (63)

In particular,
jyiz1j � jy1z1j C C jz1j � C7 (64)

and thus, from (58),
jx1xi C t1ti C y1zi j � C7 C C: (65)

From (45), (59) we also have

jt1ti C t1xi j � 2C 2 (66)
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and therefore, using (57), (59), (65),

jy1zi j � C8.jxi j C 1/: (67)

If jy1j � C 000
2 , we conclude directly from (63) that jxi j � C2. Assume therefore that

jy1j is large. Then, from (67) we have

jzi j � C8

1C jxi j
jy1j : (68)

We have also, from (63), (45),

jyi j � jy1j C C6;

jti j � jxi j � C:

Therefore, from (44),

jxi j .jxi j � C / � 1C jyizi j
� 1C C8

jy1j C C6

jy1j .1C jxi j/
� C9jxi j;

which gives finally (47). �

A.2. Connectivity of the elliptic locus. Recall that in the case of the full shift in N

symbols, E denotes the (open) subset of SL.2; R/N formed by the N -tuples which
have an elliptic product.

Proposition A.3. E is connected.

Let R� 2 SL.2; R/ denote the rotation by angle � . The proof of connectivity of
E needs the following:

Lemma A.4. Fix B1; : : : ; Bn 2 SL.2; R/, and let

F.�/ D tr
�
B1R�B2R� : : : BnR�

�
:

Then for every parameter � for which jF.�/j < 2 we have F 0.�/ ¤ 0.

Proof. This lemma is essentially proved in [2]. Complexification gives a rational
function Q.z/ such that Q.ei� / D F.�/ for real � . Moreover, Q.z/ D P.z/=zn

where P.z/ is a polynomial of degree at most 2n.
First assume that the matrices Bi satisfy

B1R�B2R� : : : BnR� ¤ ˙id for all � 2 R. (69)
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A topological argument then gives that the intersection of Q�1.Œ�2; 2�/ with the unit
circle S1 has at least 2n connected components – this is Lemma 10 in [2]. On the
other hand, Q restricted to S1 is real-valued and thus each connected component of
S1 XQ�1.Œ�2; 2�/ contains at least one zero of Q0.z/ D .zP 0.z/ � nP.z//=znC1.
It follows that all the zeros of Q0 are simple and contained in S1 X Q�1.Œ�2; 2�/.
Moreover, Q�1.Œ�2; 2�/ consists of exactly 2n intervals in S1, each with length at
least 4kQ0jS1k�11 .

Now it follows by a perturbation argument that even if condition (69) is not
satisfied, all the zeros of Q0 are simple and contained in S1 XQ�1..�2; 2//. This
concludes the proof of the lemma. �

Proof of Proposition A.3. First notice that the set of elliptic matrices is connected,
that is, the proposition is true for N D 1.

Now let N � 2. Take .A1; : : : ; AN / in E , so some product Aj1
: : : Ajm

is elliptic.
To prove the proposition, it suffices to find a path t 2 Œ0; 1� 7! .Ai .t//i in E starting
from .Ai / such that A`.1/ is elliptic for some `. Let ` be any of j1; : : : ; jm. We can
assume some ji is different from `, because otherwise there is nothing to prove.

Take a path t 2 Œ0; 1� 7! A`.t/ starting at A` and ending at some elliptic matrix.
Let Ai .t; �/ be equal to R�Ai if i ¤ `, and A`.t; �/ D A`.t/. Also, let F.t; �/ be
the trace of Aj1

.t; �/ : : : Ajm
.t; �/. Lemma A.4 (together with the assumption that

some ji is different from `) guarantees that @F
@�
¤ 0 when jF j < 2. Therefore the

differential equation d
dt

F.t; �.t// D 0 with initial condition �.0/ D 0 has a solution
�.t/ defined for t 2 Œ0; 1�. Consider the path t 7! .Ai .t// where Ai .t/ D Ai .t; �.t//.
The path is contained in E because the trace of Aj1

.t/ : : : Ajm
.t/ is constant; also,

A`.1/ is elliptic. So we are done. �
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