Title
|
Joint with...
|
“Slides”
|
Published in ...
|
Link/File
|
The entropy of Lyapunov-optimizing measures of some matrix cocycles
|
Michał Rams
|
|
Submitted
|
|
Continuity properties of the lower spectral radius
|
Ian D. Morris
|
|
Submitted
|
|
Robust criteria for the existence of nonhyperbolic measures (working title)
|
Christian Bonatti,
Lorenzo J. Díaz
|
|
In progress...
|
|
Generic linear cocycles over a minimal base
|
-
|
|
Studia Mathematica, 218 (2013), no. 2, pp. 167-188.
|
/
|
Almost reduction and perturbation of matrix cocycles
|
Andrés Navas
|
|
To appear in Annales de l'Institut Henri Poincaré - Analyse Non Linéaire.
|
/
|
Denseness of domination (working title)
|
-
|
|
In progress...
|
|
Robust vanishing of all Lyapunov exponents for iterated function systems
|
Christian Bonatti,
Lorenzo J. Díaz
|
|
Mathematische Zeitschrift 176 (2014), pp. 469-503.
|
/
|
Universal regular control for generic semilinear systems
|
Nicolas Gourmelon
|
|
...
|
|
A geometric path from zero Lyapunov exponents to rotation cocycles
|
Andrés Navas
|
|
To appear in Ergodic Theory and Dynamical Systems.
|
/
|
Perturbation of the Lyapunov spectra of periodic orbits
|
Christian Bonatti
|
|
Proceedings of the London Mathematical Society 105 (2012), no. 1, pp. 1-48.
|
/
|
Nonuniform hyperbolicity, global dominated splittings and generic properties of volume-preserving diffeomorphisms
|
Artur Avila
|
|
Transactions of the American Mathematical Society 364 (2012), no. 6, pp. 2883-2907.
|
/
|
Opening gaps in the spectrum of strictly ergodic Schrödinger operators
|
Artur Avila, David Damanik
|
|
Journal of the European Mathematical Society 14 (2012), no. 1, pp. 61-106
|
/
|
Nonuniform center bunching and the genericity of ergodicity among \(C^1\) partially hyperbolic symplectomorphisms
|
Artur Avila, Amie Wilkinson
|
|
Annales Scientifiques de l'École Normale Supérieure 42 (2009), no. 6, pp. 931-979.
|
|
Some characterizations of domination
|
Nicolas Gourmelon
|
|
Mathematische Zeitschrift 263 (2009), no. 1, pp. 221-231.
|
/
|
Uniformly hyperbolic finite-valued \({\rm SL}(2,\Bbb{R})\) cocycles
|
Artur Avila, Jean-Christophe Yoccoz
|
|
Commentarii Mathematici Helvetici 85 (2010), no. 4, pp. 813-884.
|
/
|
\(C^1\)-generic symplectic diffeomorphisms: partial hyperbolicity and zero centre Lyapunov exponents
|
-
|
|
Journal of the Institute of Mathematics of Jussieu, 9 (2010), no. 1, pp. 49-93.
|
/
|
Cantor spectrum for Schrödinger operators with potentials arising from generalized skew-shifts
|
Artur Avila, David Damanik
|
|
Duke Mathematical Journal 146 (2009), no. 2, pp. 253-280.
|
/
|
Cocycles over generic volume preserving dynamics (working title)
|
Nicolas Gourmelon
|
|
In progress...
|
|
A uniform dichotomy for generic \({\rm SL}(2,\Bbb{R})\) cocycles over a minimal base
|
Artur Avila
|
|
Bulletin de la Société Mathématique de France 135 (2007), 407--417.
|
|
Generic expanding maps without absolutely continuous invariant \(\sigma\)-finite measure
|
Artur Avila
|
|
Mathematical Research Letters 14 (2007), 721-730.
|
|
A generic \(C^1\) map has no absolutely continuous invariant probability measure
|
Artur Avila
|
|
Nonlinearity 19 (2006), 2717-2725.
|
/
|
Dichotomies between uniform hyperbolicity and zero Lyapunov exponents for \({\rm SL}(2,\Bbb{R})\) cocycles
|
Bassam Fayad
|
|
Bulletin of the Brazilian Mathematical Society 37 (2003), no. 3, 307-349.
|
/
|
A remark on conservative diffeomorphisms
|
Bassam Fayad, Enrique Pujals
|
|
Comptes Rendus Acad. Sci. Paris, Ser. I 342 (2006), 763-766.
|
/
|
\(L^p\)-generic cocycles have one-point Lyapunov spectrum
|
Alexander Arbieto
|
|
Stochastics and Dynamics 3 (2003), 73-81. Corrigendum. ibid, 3 (2003), 419-420.
|
/ +
|
Lyapunov exponents: How frequently are dynamical systems hyperbolic?
|
Marcelo Viana
|
|
Modern dynamical systems and applications, 271-297, Brin, Hasselblatt, Pesin (eds.) Cambridge Univ. Press, 2004.
|
|
Inequalities for numerical invariants of sets of matrices
|
-
|
|
Linear Algebra and its Applications, 368 (2003), 71-81.
|
/
|
The Lyapunov exponents of generic volume preserving and symplectic maps
|
Marcelo Viana
|
|
Annals of Mathematics, 161 (2005), No. 3, 1423--1485.
|
|
Robust transitivity and topological mixing for \(C^1\)-flows
|
Flavio Abdenur, Artur Avila
|
|
Proceedings of American Mathematical Society, 132 (2004), 699-705.
|
/
|
Uniform (projective) hyperbolicity or no hyperbolicity: a dichotomy for generic conservative maps
|
Marcelo Viana
|
|
Annales de l'Institut Henri Poincaré - Analyse non linéaire, 19 (2002), 113-123.
|
/
|
A formula with some applications to the theory of Lyapunov exponents
|
Artur Avila
|
|
Israel Journal of Mathematics, 131 (2002), 125-137.
|
/
|
Genericity of zero Lyapunov exponents
|
-
|
|
Ergodic Theory and Dynamical Systems, 22 (2002), 1667-1696.
|
/ ,
|
Discontinuity of the Lyapunov exponent for non-hyperbolic cocycles
|
-
|
|
Permanent preprint
|
,
|