Quantum cohomology of Grassmannians and cyclotomic fields

S.S. Galkin and V.V. Golyshev

For the quantum cohomology of Grassmannians, see [1]. Given integers l, N with $1 \leq l < N$, we write G = G(l, N) for the Grassmannian of *l*-dimensional subspaces of an *N*-dimensional vector space. Let *S* denote the tautological subbundle on *G* and Ω_{λ} the Schubert class in $H^*(G)$ corresponding to a partition λ . The three-point correlator $\langle \Omega_{\lambda}, \Omega_{\mu}, \Omega_{\nu} \rangle_d$ is defined as the number of rational curves of degree *d* intersecting general representatives of these classes. The algebra $QH^*(G,\mathbb{Z})$ is a $\mathbb{Z}[q]$ -module isomorphic to $H^*(G, Z)_{\mathbb{Z}} \otimes \mathbb{Z}[q]$ and equipped with the following multiplication. Denoting the Schubert classes in this algebra by σ_{λ} , so that $\sigma_{\lambda} = \Omega_{\lambda} \otimes 1$, we put $\sigma_{\lambda} \cdot \sigma_{\mu} = \sum_{\nu, d \geq 0} \langle \sigma_{\lambda}, \sigma_{\mu}, \sigma_{\nu^{\vee}} \rangle_d q^d \sigma_{\nu}$, where ν^{\vee} is the partition dual to ν .

Let ζ be a primitive Nth root of $(-1)^{l+1}$.

Put $K = \mathbb{Q}(\zeta)$, k = N - l and let $\Lambda = \mathbb{Z}[e_1, e_2, ...]$ be the (graded) ring of symmetric functions, where e_i is the *i*th elementary symmetric function. Let h_i be the *i*th complete symmetric function. Putting $E(t) = \sum e_i t^i$, $H(t) = \sum h_i t^i$, we have E(-t)H(t) = 1. The result of applying a symmetric function σ to a tuple (x_1, \ldots, x_n) of arguments will be denoted by $\sigma(x_1, \ldots, x_n)$. Finally, we put $\Lambda' = \Lambda/(e_{l+1}, e_{l+2}, \ldots)$, $\Lambda_{\mathbb{Q}} = \Lambda \otimes \mathbb{Q}$, $\Lambda'_{\mathbb{Q}} = \Lambda' \otimes \mathbb{Q}$ and $\Lambda'_K = \Lambda'_{\mathbb{Q}} \otimes_{\mathbb{Q}} K$.

Theorem 1 (Siebert-Tian [2]). The homomorphism of rings $ST: \Lambda[q] \rightarrow QH(G, \mathbb{Z})$ defined by $ST(q) = 1 \otimes q$, $ST(e_i) = c_i(S^*) \otimes 1$ is an epimorphism, and Ker $ST = (e_{l+1}, e_{l+2}, \ldots; h_{N-l+1}, \ldots, h_{N-1}, h_N + (-1)^l q).$

Let $QH(G, \mathbb{Q}) = QH(G, \mathbb{Z}) \otimes \mathbb{Q}$ be the rational quantum cohomology ring and let $QH(G, \mathbb{Q}, 1)$ denote its specialization for q = 1. Putting

$$I_1 = (h_{N-l+1}, \dots, h_{N-1}, h_N + (-1)^l),$$

we clearly have $QH(G, \mathbb{Q}, 1) = \Lambda'_{\mathbb{Q}}/I_1$. The K-algebra $QH(G, K, 1) = QH(G, \mathbb{Q}, 1) \otimes_{\mathbb{Q}} K$ and the ideal $I_1^K = I_1 \otimes K$ are defined similarly.

Let $\theta_1, \ldots, \theta_N$ denote the distinct Nth roots of unity and let $J = j_1 j_2 \ldots j_l$ be the multi-index numbering the distinct *l*th roots of unity with $j_1 \leq \cdots \leq j_l, j_k \in \{1, \ldots, N\}$. We shall write θ_J in place of $\{\theta_{j_1}, \ldots, \theta_{j_l}\}$ and $\sigma(\zeta \theta_J)$ in place of $\sigma(\zeta \theta_{j_1}, \ldots, \zeta \theta_{j_l})$. We put $\theta_{\bar{J}} = \{\theta_1, \ldots, \theta_N\} \setminus \{\theta_{j_1}, \ldots, \theta_{j_l}\}$ and let $\phi_J \colon \Lambda'_K \to K$ be the homomorphism given by $\phi_J(\sigma) = \sigma(\zeta \theta_J)$. We put $I_J = \operatorname{Ker} \phi_J$ and $\phi = \bigoplus \phi_J$.

Lemma 2. If $J \neq J'$, then $I_J \neq I_{J'}$.

Proof. If the K-points on $\mathbb{A}_K^l = \operatorname{Spec} \Lambda'_K$ corresponding to the ideals I_J and $I_{J'}$ coincide, then so do their coordinates, which are the values of the symmetric functions $\sigma_1, \ldots, \sigma_l$ on the tuples θ_J and $\theta_{J'}$. Hence, the tuples themselves also coincide.

Lemma 3. For a fixed J there is an embedding of ideals $I_1^K \subset I_J$.

Proof. We have $\left(\sum_{i=0}^{l} e_i(\theta_J)(-t)^i\right) \left(\sum_{i=0}^{k} e_i(\theta_{\bar{J}})(-t)^i\right) = 1 - t^N$. On the other hand,

$$\left(\sum_{i=0}^{l} e_i(\theta_J)(-t)^i\right) \left(\sum_{i=0}^{\infty} h_i(\theta_J)t^i\right) = 1.$$

The work of the first author was supported by the grants RFBR 04-01-00613 and 04-01-00702. AMS 2000 Mathematics Subject Classification. 14N35, 15A75, 11R60.

DOI 10.1070/RM2006v061n01ABEH004304.

Hence,

$$\sum_{i=0}^{k} e_i(\theta_{\bar{J}})(-t)^i = \left(\sum_{i=0}^{l} e_i(\theta_J)(-t)^i\right) \left(\sum_{i=0}^{k} e_i(\theta_{\bar{J}})(-t)^i\right) \left(\sum_{i=0}^{\infty} h_i(\theta_J)t^i\right)$$
$$= (1-t^N) \sum_{i=0}^{\infty} h_i(\theta_J)t^i.$$

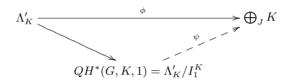
Comparing the coefficients of t^i , we find that $h_i(\theta_J) = 0$ for i = k + 1, ..., N - 1 and $h_N(\theta_J) - 1 = 0$. Hence, $h_i(\zeta \theta_J) = 0$ for i = k + 1, ..., N - 1 and $h_N(\zeta \theta_J) = \zeta^N = (-1)^{l+1}$.

Corollary 4. There is an embedding of ideals $I_1^K \subset \text{Ker }\phi$.

Corollary 5. The representation ϕ factors through the homomorphism

$$\psi\colon QH^*(G,K,1)\to \bigoplus_J K$$

of finite-dimensional commutative algebras:



Theorem 6. ψ is an isomorphism.

Proof. We must show that $\operatorname{Ker} \phi = I_1^K$. By Lemma 3, we have the embedding $I_1^K \subset \operatorname{Ker} \phi$. It is clear that $\operatorname{Ker} \phi = \bigcap_J I_J$. $\operatorname{Ker} \phi$ is the intersection of the distinct (by Lemma 2) maximal ideals I_J . As a K-vector space in the ring Λ'_K , each of these has codimension 1. Hence, their intersection has codimension over K equal to their number, that is, $\binom{N}{l}$. On the other hand, the codimension of I_1^K is equal to the dimension of the factor-ring Λ'_K/I_1^K . By the Siebert–Tian theorem, this ring is isomorphic to the quantum cohomology ring, which is a free module of rank $\dim_K H^*(G, K, 1) = \binom{N}{l}$ over K. Hence, the ideals $\operatorname{Ker} \phi$ and I_1^K coincide.

Corollary 7. The algebra Λ'_K/I_1^K is semisimple. It is the direct sum of its distinct minimal prime ideals, each of which is isomorphic to K.

Corollary 8. The algebra $\Lambda'_{\mathbb{Q}}/I_1$ is semisimple. The eigenvalues of the operators of multiplication by the Schubert classes lie in K.

Conjecture 9. Let G be the Grassmannian of maximal isotropic planes in an even-dimensional space equipped with a non-degenerate quadratic form, or the Grassmannian of Lagrangian planes in a space with a symplectic form. Then the eigenvalues of the operator of multiplication by a divisor class, acting on the space $QH(G, \mathbb{Q}, 1)$, are defined over a cyclotomic extension of \mathbb{Q} .

Let G be a generalized Grassmannian, that is, a factor of a (classical) simple group by a maximal parabolic subgroup. We do not expect, in general, that the eigenvalues of the operator of multiplication by a divisor class will be defined over a cyclotomic field.

Bibliography

- [1] A. Buch, Compositio Math. 137:2 (2003), 227–235.
- [2] B. Siebert and G. Tian, Asian J. Math. 1:4 (1997), 679-695.

S.S. Galkin

Presented by A.G. Sergeev Received 1/DEC/05

Steklov Institute of Mathematics *E-mail*: galkin@mi.ras.ru

V.V. Golyshev

Steklov Institute of Mathematics