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Abstract. There exists a well-known criterion for the solvability
of the Dirichlet Problem for the constant mean curvature equation
in bounded smooth domains in Euclidean space. This classical
result was established by Serrin in 1969. Focusing the Dirichlet
Problem for radial vertical graphs P.-A. Nitsche has established an
existence and non-existence results on account of a criterion based
on the notion of a hyperbolic cylinder. In this work we carry out
a similar but distinct result in hyperbolic space considering a dif-
ferent Dirichlet Problem based on another system of coordinates.
We consider a non standard cylinder generated by horocycles cut-
ting ortogonally a geodesic plane P along the boundary of a domain
Ω ⊂ P. We prove that a non strict inequality between the mean
curvature H′

CCC(y) of this cylinder along ∂Ω and the prescribed mean
curvature H(y), i.e H′

CCC(y) > |H(y)|, ∀ y ∈ ∂Ω and |H(x)| 6 1 or
|H(x)| = a (constant) yields existence of our Dirichlet Problem.
Thus we obtain existence of surfaces whose graphs have prescribed
mean curvature H(x) in hyperbolic space taking a smooth pre-
scribed boundary data φ. This result is sharp because if our con-
dition fails at a point y a non-existence result can be inferred. The
authors highly thank Friedrich Tomi, for pointing out to us gently
an error in certain statements of the paper. The present version is
the corrected version.
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1. Introduction

A classical result in Partial Differential Equations and Differential
Geometry due to Serrin (1969) is the following: Given a constant a,
there exists a condition on the boundary of the domain Ω such that the
Dirichlet Problem for the mean equation H = a is solvable. In fact, if
the mean curvature of the Euclidean cylinder over ∂Ω is bigger than a,
then some a priori gradient estimates ensures a posteriori existence for
the Dirichlet Problem. This inequality is sharp in the following sense:
if it does not hold at a point then it can be inferred non-existence for
a certain smooth boundary data. In this article we carry out a similar
program in hyperbolic space, taking into account a certain coordinates
system and a certain geometric boundary condition in hyperbolic space
based on a suitable but not standard notion of “cylinder”. A novelty
value in our paper is the deduction of a solution of the related Dirich-
let Problem for prescribed (not necessarily constant) mean curvature
H(x). Moreover, the sharpness of the result is assured by a non- ex-
istence result if our criterion in hyperbolic space “fails at a point”.
In fact, let P be a n-dimensional totally geodesic plane in hyperbolic
space Hn+1 and let Ω be a domain in P with C2 boundary ∂Ω.

We shall focus the upper halfspace model of hyperbolic space, i.e
Hn+1 := {(x0, x1, . . . , xn); xn > 0} equipped with the metric

ds2 =
1

x2n
(dx20 + dx21 + · · · + dx2n). For sake of simplicity, we fix a

hyperplane P := {x0 = 0}. Notice that the asymptotic boundary
of Hn+1 denoted ∂∞Hn+1 is defined by ∂∞Hn+1 := {xn = 0} ∪ {∞}.
We represent by ∂Ω a (n− 1)-dimensional closed connected embedded
smooth submanifold of P . We then define CCC by the n-dimensional
cylinder generated by horocycles with asymptotic boundary ∞ cutting
orthogonally P . That is,
CCC := {(t, x1, · · · , xn); t ∈ R, (0, x1, · · · , xn) ∈ ∂Ω}.

Notice that in this model P is a vertical hyperplane and our cylinder
CCC is an “Euclidean horizontal cylinder”. We shall consider throughout
this paper the following definition of horizontal graph of a function in
hyperbolic space: Let Ω ⊂ P be the domain whose boundary is ∂Ω.
Given a function u : Ω → R, the graph of u is defined as the set

G(u) = {(u(x1, . . . , xn), x1, . . . , xn); (0, x1, . . . , xn) ∈ Ω}.

Indeed, this is the natural notion of graph in our system of coordinates
given by horocycles cutting ortogonally P .

We shall commence to describe the equation that we are going to
focus:
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Given a C1 function H : Ω̄ ⊂ P → R, and a C2 function φ : Ω → R,
we shall consider the following Dirichlet Problem for the prescribed
horizontal mean curvature equation, say Problem (P ):

div

(
Du

W (u)

)
=

n

xn

(
H+

Dnu

W (u)

)
in Ω(1)

u = φ on ∂Ω

whereDumeans the Euclidean gradient of u in P ,W (u) =
√

1 + |Du|2

Diu =
∂u

∂xi
, i = 1, . . . , n and the symbol “div” denotes the divergence

in Rn = {(x1, . . . , xn)}. We shall explain with details some historical
backgrounds and motivations. A main uniqueness result obtained by
Lucas Barbosa and the second author (see [5], [6]) gives a strong mo-
tivation for the study of the above Dirichlet Problem. In fact, under
some assumptions about the relation of the size of H with the ge-
ometry of ∂Ω , uniqueness of the above Dirichlet Problem (horizontal
graphs) can be inferred in the class of immersed compact hypersurfaces
with same mean curvature and same boundary. Particularly, if H is
constant with H2 6 1, and if the principal curvatures λi of the bound-
ary ∂Ω satisfy an inequality λi > h0 > 1, then any smooth compact
connected immersed n-dimensional manifold with boundary ∂Ω is an
horizontal graph. Lucas Barbosa and the second author have focus at-
tention exclusively on the case of zero boundary conditions. Horizontal
graphs satisfying the assumptions above were constructed to be used
as barriers to obtain the cited main uniqueness theorem.

Before proceeding with the discussion of our problem in hyperbolic
space, we pause to precise the criterion for the solvability of the Dirich-
let Problem in Euclidean space, for the equation of constant mean cur-
vature equation in a bounded C2 domain Ω. Let H

′
be the mean curva-

ture of ∂Ω. Then the constant mean curvature equation div

(
Du

W (u)

)
=

nH in Ω , u = φ on ∂Ω is solvable for constant H and arbitrary
boundary continuous data φ if and only if (n − 1)H

′ > n |H| every-
where on ∂Ω. This theorem for smooth boundary data was established
by J. Serrin in [26]. Notice that convexity of Ω is the sharp criterion
of solvability for arbitrary continuous boundary data of the Dirichlet
Problem on a bounded domain for the minimal surface equation in two
variables; this was proved by R. Finn [10]. For more than two variables
H. Jenkins and J. Serrin in [13] showed that the minimal hypersurface
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equation on a bounded C2,α domain, say Ω, 0 < α < 1, is solvable for
arbitrary φ ∈ C2,α(Ω̄) if and only if the mean curvature H

′
of ∂Ω is

non-negative at every point of ∂Ω.
Notice that the mean curvature equation in Euclidean space is now

classical in the literature (see, for instance [3], [7], [9], [12]). Notice
that there exist some recent interesting papers on minimal graphs over
unbounded domains (see [29], [15]). We should mention the remarkable
work of R. Schoen on the mean curvature equation in Euclidean space
and its application to Geometry (see [27]).

L. Bers showed the classical minimal surface equation cannot have
an isolated singularity (see [2]). The same result for the constant mean
curvature equation was established by R. Finn (see [11]). The remov-
able singularity theorem for prescribed mean curvature equations in
Rn+1 is due to the H. Rosenberg in a joint work with the second au-
thor (see [22]).

Returning to hyperbolic space, we observe that a removable singu-
larity type theorem for the horizontal mean curvature equation in
hyperbolic space was done by B. Nelli and the second author (see [20]).

∗ ∗ ∗
Now we shall writedown the geometric condition (say, condition (∗))

that plays a crucial role in the whole study of our Dirichlet Problem
(P ) for the prescribed mean curvature H(x):

H′
CCC(y) > |H(y)|, ∀ y ∈ ∂Ω (∗)

where H′
CCC(y) is the mean curvature of the cylinder generated by horo-

cycles at a boundary point y.
We can express above inequality in the following equivalent analytic

form

(n− 1)H′(y) + xn(y)Dnd(y) > n|H(y)|, ∀ y ∈ ∂Ω (∗)

whereH′(y), is the mean curvature of the boundary of Ω and xn(y)Dnd(y)
is the nth vertical component of the Euclidean unit interior normal to
∂Ω at a boundary point y (d(x) is the hyperbolic distance from x ∈ Ω
to the boundary ∂Ω). We feel that it is interesting to give now a
geometric insight about the second term that appears on the left of
the above inequality : We recall that Serrin’s condition in Euclidean
space ensures a priori boundary gradient estimates that are essential
for the related Dirichlet Problem. On the other hand, looking to the
simplest situation in hyperbolic space, it is not hard to see that there
exist “spherical caps”of geodesic (minimal) planes cutting ortogonally
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the plan of the domain Ω at some point y, whose projections are con-
vex curves (Euclidean ellipse) in the hyperbolic plane P . Thus, Serrin
inequality holds but we have no control of the gradient at y.

However, condition (∗) allows us to infer a priori boundary gradient
estimates for the smooth solutions of Dirichlet Problem (P ). We infer
these estimates in Section 2. Then in Section 3 we prove existence for
Dirichlet Problem (P ) for the prescribed mean curvature H(x), given
smooth boundary value data φ, if condition (∗) holds, and |H(x)| 6 1
or |H(x)| = a (constant). Finally, in Section 4, we obtain non-existence
for the Dirichlet Problem (P ), if condition (∗) fails at a point.

We would like to mention that in a preliminary version we have de-
rived our existence result for |H(x)| 6 1. However Harold Rosenberg in
a private conversation recalled to us the height estimates for compact
embedded constant mean curvature hypersurfaces in hyperbolic space
with constant mean curvature H > 1 (see [14], [21]). In view of this, if
condition (∗) holds, and |H(x)| 6 1 or |H(x)| = a (constant), our con-
struction provide existence of the Dirichlet Problem (P ) for prescribed
H(x)-hypersurfaces (taking prescribed smooth value data).

We remark that P.- A. Nitsche (see [19]) studied a different Dirichlet
Problem on account of a different notion of graph, precisely radial
vertical graphs. His condition is philosophically similar to our but
geometrically distinct: Instead of cylinders generated by horocycles
the author deals with usual hyperbolic cylinders. He proved that if the
strict inequality between the mean curvature of the hyperbolic cylinder
along the boundary of the domain (in a totally geodesic plane) and
the prescribed mean curvature holds, then existence of his Dirichlet
Problem for mean curvature less than 1 can be deduced. If the reverse
strict inequality holds then he proved non existence.

At last, we would like to mention that there exists also a notion of
vertical graphs in hyperbolic space. For instance, the reader is referred
to [20] and [23]. We also point out that F. Lin (see [16]) studied regular-
ity for vertical minimal equation in hyperbolic space. E. Toubiana and
the second author (see [25]) established the Perron process for these
vertical minimal equations in two independent variables.

The program accomplished in this paper was motivated by a ques-
tion raised by the second author (see [23]), then investigated by the
first author in his Doctoral Thesis under the supervision of the second
author (see [8]).

Acknowledgements. The authors highly thank Friedrich Tomi, for
pointing out to us gently an error in certain statements of the paper.
The present version is the corrected version.
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2. A priori boundary gradient estimates

Next, we begin our investigation of the Dirichlet Problem (P ) by
first deriving an estimate given by the following theorem

Theorem 2.1 (a priori boundary gradient estimate). Let Ω be a bounded
domain in Hn with C3 boundary ∂Ω, φ ∈ C2(Ω) and H(x) ∈ C1(Ω).
If u ∈ C2(Ω) ∩ C1(Ω) is a solution of Dirichlet Problem (P ) and if
H(x) satisfies condition (∗) then

sup
∂Ω

|Du| 6 c

where
c = c(n, Ω, inf

Ω
xn, sup

Ω
xn, sup

Ω
|u|, |φ|2, |H|1).

Proof. Before getting into details we are going to outline the proof.
Recall that d(x) = dist(x, ∂Ω) be the hyperbolic distance from x ∈ Ω to
the boundary ∂Ω. Notice that d ∈ C2(Γ) where Γ = {x ∈ Ω; d(x) < d0}
for some d0 > 0 small enough. To obtain the a priori estimate we shall
make use of barriers techniques. We shall construct a supersolution ω+

and a subsolution ω− satisfying (Q is an elliptic operator) :

±Q(ω±) 6 0 in N ∩ Ω

±ω± ≥ ±u in ∂(N ∩ Ω),
(2)

where N is a neighborhood of ∂Ω lying in Γ. More precisely, we shall
infer that suitable barriers can be chosen of the form

(3) ω± = ±ψ(d) + φ

where ψ : [0,∞) → R, is a C2 function such that ψ(0) = 0, ψ′ > 0
and ψ′′ < 0. Now notice that maximum principle yields

u(x) 6 ψ(d(x)) + φ(x), ∀ x ∈ N ∩ Ω

−ψ(d(x)) + φ(x) 6 u(x), ∀ x ∈ N ∩ Ω
(4)

Let us recall how to proceed to obtain the a priori estimate by the
method of barriers. Now let x0 ∈ ∂Ω be an arbitrary point of the
boundary of Ω and let v⃗ be an unit Euclidean . Let us assume that
v⃗ · −→n > 0, where · is the inner product and −→n is an Euclidean unit
normal interior to Ω at x0. Then from the above inequalities we get

−ψ ◦ d(x0 + ϵv⃗)

ϵ
+
φ(x0 + ϵv⃗)− φ(x0)

ϵ
6 u(x0 + ϵv⃗)− u(x0)

ϵ
6

6 ψ ◦ d(x0 + ϵv⃗)

ϵ
+
φ(x0 + ϵv⃗)− φ(x0)

ϵ

for ϵ > 0 small enough.
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Now let ϵ→ 0+. We obtain

−ψ′(0)Dd(x0)· v⃗+Dφ(x0)· v⃗ 6 Du(x0)· v⃗ 6 ψ′(0)Dd(x0)· v⃗+Dφ(x0)· v⃗

Notice that |Dd(x0)| =
1

xn(x0)
, where |.| stands for the Euclidean norm.

Now taking v⃗ =
Du(x0)

|Du(x0)|
, by applying Schwarz inequality we deduce

therefore

|Du(x0)| 6
ψ′(0)

inf
Ω
xn

+ sup
Ω

|Dφ|, ∀ x0 ∈ ∂Ω.

Henceforth |Du|∂Ω 6 c, moreover, for our future choice of ψ

c = c(n, Ω, inf
Ω
xn, sup

Ω
xn, sup

Ω
|u|, |φ|2, |H|1),

where

|φ|2 = max{sup
Ω

|φ|, sup
Ω

|Dφ|, sup
Ω

|D2φ|} and |H|1 = max{sup
Ω

|H|, sup
Ω

|DH|}.

This will prove the desired a priori estimate. We are going now to
carry out the details. First, notice that the mean equation (1) can be
re-written in the form

Q(u) =
n∑

i,j=1

aij(x,Du)Diju+ b(x,Du) = 0

where (using summation convention)

aij(x,Du) = (1 + |Du|2)δij −DiuDju

b(x,Du) = −nDnu(1 + |Du|2)
xn

− nH(1 + |Du|2)3/2

xn
·

Let us assume momentarily that the barriers ω± are chosen such that
ψ satisfies

Property (i) ψ(a) >M = sup
Ω

|φ|+ sup
Ω

|u|

Property (ii) ψ′(d) d 6 1

Property (iii) ψ′|Dd| > µ

where µ > 3|Dφ| + 8 is a fixed constant. We shall first work with
ω+. For sake of simplicity we shall adopt the following notations and

conventions: ω = ω+ and ξ =
n∑

i,j=1

aij(x,Dω)(Diω − Diφ)(Djω −

Djφ). Recalling that the eigenvalues of the matrix aij(x,Dω) are 1
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and (1 + |Dω|2), we observe that |Dω−Dφ|2 6
n∑

i,j=1

aij(x,Dω)(Diω−

Diφ)(Djω − Djφ). In view of our choice of barriers, see (3), we have
|Dω−Dφ| ≥ µ. Employing the inequality above together with Cauchy’
s inequality we infer that

ξ > |Dω−Dφ|2 > |Dω|2

2
−|Dφ|2.We also can deduce that µξ ≥ 1+

|Dω|2, with the aid of Schwarz’s inequality. We begin now to estimate
Q(ω) in Γ to seek a suitable upper bound of the form Q(ω) 6 (cst)ξ :

Q(ω) =
n∑

i,j=1

aij(x,Dω)Dijω + b(x,Dω)

=
n∑

i,j=1

aij(x,Dω)(ψ′′DidDjd+ ψ′Dijd+Dijφ) + b(x,Dω)

= ψ′
n∑

i,j=1

aij(x,Dω)Dijd+
n∑

i,j=1

aij(x,Dω)Dijφ+ b(x,Dω) +
ψ′′

ψ′2 ξ

:= A+B + C +D

(1) Estimate of A

A = ψ′
n∑

i,j=1

aij(x,Dω)Dijd = ψ′
n∑

i,j=1

((1 + |Dω|2)δij −DiωDjω)Dijd

= ψ′(1 + |Dω|2)
n∑

i=1

Diid− ψ′3
n∑

i,j=1

DidDjdDijd−

− 2ψ′2
n∑

i,j=1

DidDjφDijd− ψ′
n∑

i,j=1

DiφDjφDijd

Now in view of the hyperbolic metric we record that

(5) |Dd|2 = 1

x2n
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Owing to (5) we obtain

−ψ′3
n∑

i,j=1

DidDjdDijd =
ψ′3Dnd

x3n

=
ψ′(1 + |Dω|2)Dnd

xn
−

− ψ′Dnd

xn
(2ψ′Dd ·Dφ+ |Dφ|2 + 1)

(6)

Now the last term above can be estimated as follows

|ψ
′Dnd

xn
(2ψ′Dd ·Dφ+ |Dφ|2 + 1)| 6 ψ′

x2n
|2(Dω −Dφ) ·Dφ+ |Dφ|2 + 1|

6 |Dω −Dφ|
xn

(2|Dω −Dφ||Dφ|+ |Dφ|2 + 1)

6 |Dω −Dφ|2

xn
(3|Dφ|+ 1)

(7)

Notice that the expression ψ′2
n∑

i,j=1

DidDjφ satisfies the in-

equality

|ψ′2
n∑

i,j=1

DidDjφ| =|ψ′
n∑

i,j=1

(Diω −Diφ)Djφ|

6n2ψ′|Dω −Dφ||Dφ|
=n2xn|Dω −Dφ|2|Dφ|

(8)

Consequently

A =ψ′
n∑

i,j=1

aij(x,Dω)Dijd 6 ψ′(1 + |Dω|2)

(
n∑

i=1

Diid+
Dnd

xn

)
+

+|Dω −Dφ|2
[(
2n2xn|Dφ|+ n2xn|Dφ|2

)
sup
Γ

|Dijd|++
1 + 3|Dφ|

xn

]
(2) Estimate of B

B =
n∑

i,j=1

aij(x,Dω)Dijφ 6 (1 + |Dω|2)
n∑

i,j=1

sup
Ω

|Dijφ|

(3) Estimate of C

C = b(x,Dω) =
−n
xn

Dnω(1 + |Dω|2)− n

xn
(1 + |Dω|2)3/2H
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Now write (Big-oh notation)

(1+|Dω|2)3/2 = (1+|Dω|2) (ψ′|Dd|+ |Dφ|)+(1+|Dω|2)O(1), (as |Dw| → ∞)

Then

b(x,Dω) 6−nψ′

x2n
(1 + |Dω|2)H+

n

xn
(1 + |Dω|2) (|H|+ |H||Dφ|)

− nψ′Dnd

xn
(1 + |Dω|2) + +

n

xn
|Dφ|(1 + |Dω|2)

=
ψ′(1 + |Dω|2)

x2n
(−nH− nxnDnd)+

+
(1 + |Dω|2)

xn
(nO(1)|H|+ n|H||Dφ|+ n|Dφ|)

where O(1) will always represent a term which is bounded by a constant
under control. From now on we will omit it. Combining these estimates
we find

Q(ω) 6 ψ′(1 + |Dω|2)
x2n

(
x2n

n∑
i=1

Diid− (n− 1)xnDnd− nH

)
+

+ |Dω −Dφ|2
(
1 + 3|Dφ|

xn
+
(
2n2xn|Dφ|+ n2xn|Dφ|2

)
sup
Γ

|Dijd|
)
+

+ (1 + |Dω|2)

(
n |H|
xn

+
n∑

i,j=1

sup
Ω

|Dijφ|+
n|H||Dφ|

xn
+

n

xn
sup
Ω

|Dφ|

)
+
ψ′′

ψ′2 ξ

Taking into account the two inequalities µξ ≥ (1+ |Dω|2) and |Dω−
Dφ|2 6 ξ, we infer

Q(ω) 6ψ
′(1 + |Dω|2)

x2n

(
x2n

n∑
i=1

Diid− (n− 1)xnDnd− nH

)
+

+

[(
2n2xn|Dφ|+ n2xn|Dφ|2

)
sup
Γ

|Dijd|+
1 + 3|Dφ|

xn
+

+

(
n |H|
xn

+
n∑

i,j=1

sup
Ω

|Dijφ|+
n|H||Dφ|

xn
+

n

xn
sup
Ω

|Dφ|

)
µ

]
ξ +

ψ′′

ψ′2 ξ

We pause now to say a few words about basic hyperbolic geometry.
We first note that fixing any two points Q = (x1, ...., xn) and P =
(y1, ...., yn) in Hn, a straigtforward computation shows that hyperbolic
distance dist(P,Q) has an explicit formula given by



A MEAN CURVATURE EQUATION IN HYPERBOLIC SPACE 11

dist(Q,P ) = ln


√

n−1∑
i=1

(xi − yi)2 + (xn + yn)2 +

√
n∑

i=1

(xi − yi)2√
n−1∑
i=1

(xi − yi)2 + (xn + yn)2 −
√

n∑
i=1

(xi − yi)2


We shall need now fundamental formulas in hyperbolic space. Let

t = d(x), 0 6 t 6 d0, where d0 is chosen suficiently small. From a
standard computation it follows that (see, for instance [8], [17], [28])

(9) x2n(x)
n∑

i=1

Diid(x)− (n− 2)xn(x)Dnd(x) =
n−1∑
i=1

tanh t− ki
1− ki tanh t

where k1, k2, · · · , kn−1 the principal curvatures of ∂Ω at y. Here y =
y(x) is the closest point in ∂Ω to x.

On account of (9), we are now going to obtain a bound for the
expression

x2n(x)
n∑

i=1

Diid(x)− (n− 1)xn(x)Dnd(x)− nH(x)

As
−ki

1− ki tanh t
, is a non-increasing function in the t variable we find

x2n(x)
n∑

i=1

Diid(x)− (n− 2)xn(x)Dnd(x)

6 −(n− 1)H′(y) +
n−1∑
i=1

tanh t

1− ki tanh t

(10)

where H′ is the mean curvature of ∂Ω at y. As
n−1∑
i=1

tanh t

1− ki tanh t
=

t O(1), in view of our condition (∗) we derive

x2n(x)
n∑

i=1

Diid(x)− (n− 1)xn(x)Dnd(x)− nH(x) 6

6 nH(y) + xn(y)Dnd(y) + t O(1)− xn(x)Dnd(x)− nH(x)

= n(H(y)−H(x)) + xn(y)Dnd(y)− xn(x)Dnd(x) + t O(1)
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Now utilizing the relation between Euclidean and hyperbolic metrics
we get

x2n(x)
n∑

i=1

Diid(x)− (n− 1)xn(x)Dnd(x)− nH(x) 6 (1 +K)t O(1)

where K = sup
x∈Γ

n|H(y)−H(x)|
|x− y|

+ sup
x∈Γ

|xn(y)Dnd(y)− xn(x)Dnd(x)|
|x− y|

Estimate of Q(ω)

Q(ω) 6
[
(1 +K)t O(1)ψ′µ

x2n
+ (2n2xn|Dφ|+ n2xn|Dφ|2) sup

Γ
|Dijd|+

1 + 3|Dφ|
xn

+

+

(
n |H|
xn

+
n∑

i,j=1

sup
Ω

|Dijφ|+
n|H||Dφ|

xn
+

n

xn
sup
Ω

|Dφ|

)
µ+

ψ′′

ψ′2

]
ξ

Thus

Q(ω) 6
(
ν0 +

ψ′′

ψ′2

)
ξ

where

ν0 =

1 +K

inf
Ω
x2n

+

n sup
Ω

|H||Dφ|+ n sup
Ω

|Dφ|+ n|H|

inf
Ω
xn

µ+

+
n∑

i,j=1

sup
Ω

|Dijφ|µ+

+

(
2n2 sup

Ω
|xnDφ|+ n2 sup

Ω
xn|Dφ|2

)
sup
Γ

|Dijd|+

+ sup
Ω

1 + 3|Dφ|
xn

(11)

We turn now to our primary task to build the barriers.
Choose then ν = max{ν0, 1}. We have

Q(ω) 6 (ν +
ψ′′

ψ′2 )ξ

We now choose ψ setting

ψ(d) =
1

ν
ln(1 + kd), 0 ≤ d 6 a .
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We must require that a and k satisfy
(12)
(i) ψ(a) >M = sup

Ω
|φ|+ sup

Ω
|u|, (ii) ψ′(d)d 6 1, (iii) ψ′|Dd| > µ .

Notice that ψ(0) = 0, ψ′ > 0 and ψ′′ < 0. We must verify now the
property (i), (ii) and (iii).

Property (i) Let us take a =
eνM − 1

k
, choosing k big enough to

guarantee a 6 d0. Hence
1

ν
ln(1 + ka) =M.

Property (ii) Since ψ′(d)d in increasing, it follows that

ψ′(d)d 6 ψ′(a)a =
ka

ν(1 + ka)
6 1

Property (iii) Notice that

ψ′|Dd| = ψ′

xn
> ψ′

sup
Ω
xn

> H
ψ′(a)

sup
Ω
xn

=
k

νeνM sup
Ω
xn

≥ µ,

if k is chosen big enough to ensure

k ≥ µνeνM sup
Ω
xn

In view of the above construction we get a function ψ satisfying the
required conditions to obtain the supersolution ω = ω+. Note also that
ψ′′

ψ′2 + ν = 0. We have established therefore that the upper barrier ω

satisfies (2) with the plus sign, namely

Q(ω) 6 0 in N ∩ Ω,

ω ≥ u on ∂(N ∩ Ω)

Thus owing to maximum principle we infer the first inequality in (4),
as desired.

We now must seek for the lower barrier ω− satisfying the second
inequality in (4). So we need to find ω− satisfying (2) (with the minus
sign). We will skip the details of this construction. We summarize it
as follows. Computation of Q(w) is similar as before. Notice that

Q(ω) =
n∑

i,j=1

aij(x,Dω)(−ψ′′DidDjd− ψ′Dijd+Dijφ) + b(x,Dω)

=− ψ′
n∑

i,j=1

aij(x,Dω)Dijd+
n∑

i,j=1

aij(x,Dω)Dijφ+ b(x,Dω)− ψ′′

ψ′2 ξ
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Now working as in the estimate of the upper barrier we derive that

Q(ω) ≥−ψ′(1 + |Dω|2)
x2n

(
x2n

n∑
i=1

Diid− (n− 1)xnDnd+ nH

)
−

−
[
(2n2xn|Dφ|+ n2xn|Dφ|2) sup

Γ
|Dijd|+

1 + 3|Dφ|
xn

+

+

(
n|H|
xn

+
n∑

i,j=1

sup
Ω

|Dijφ|+
n|H||Dφ|

xn
+

n

xn
sup
Ω

|Dφ|

)
µ

]
ξ − ψ′′

ψ′2 ξ

Using once more condition (∗) and fundamental formula (9) we can
calculate

x2n(x)
n∑

i=1

Diid(x)− (n− 1)xn(x)Dnd(x) + nH(x) 6 (1 +K)tO(1)

We conclude therefore

Q(ω) ≥ −
(
ν +

ψ′′

ψ′2

)
ξ

since ψ′(d)d ≤ 1 and ψ′|Dd| ≥ µ, where ν is defined as before, see (11).

Consequently, choose now ψ =
1

ν
ln(1+ kd), as before to conclude that

ω = −ψ ◦ d+ φ is a lower barrier satisfying (2) (with the minus sign),
as desired. Thus the proof of Theorem 2.1 is now established.

�
We shall need a version of Theorem 2.1 for a family t, t ∈ [0, 1] to

proceed further and to infer an existence theorem in Section 3, using
degree theory. The proof is the same as before with tH in place of
H and tφ in place of φ. We next give the precise statement for future
reference.

Theorem 2.2 (a priori boundary gradient estimate for a family t). Let
Ω be a bounded domain in Hn with C3 boundary ∂Ω, φ ∈ C2(Ω) and
H(x) ∈ C1(Ω). If u = ut ∈ C2(Ω)∩C1(Ω) is a solution of the following
Dirichlet Problem (Pt) (using summation convention)

Qt(u) = aij(x,Du; t)Diju+ b(x,Du; t) = 0 in Ω

u = tφ on ∂Ω
(13)

where

aij(x,Du; t) = (1 + |Du|2)δij −DiuDju

b(x,Du; t) = −nDnu

xn
(1 + |Du|2)− tnH(x)

xn
(1 + |Du|2)3/2
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If satisfies condition (∗) holds then
sup
∂Ω

|Du| 6 c

where
c = c(n, Ω, inf

Ω
xn, sup

Ω
xn, sup

Ω
|ut|, |φ|2, |H|1).

3. Existence results

In hyperbolic space horospheres play a role of geometric barriers
and give rise to a geometric principle. This idea has been useful in
many papers. We refer to [24] and to the references there. Let us
briefly summarize it now. Consider M a smooth compact immersed
surface into hyperbolic space with boundary a curve γ. Assume that
the mean curvature ofM is not bigger than 1. Now take any horosphere
H that involves γ. Then H involves entirely M. In fact, the contrary
we obtain a copy Ht by hyperbolic translating H involving M and
touching M at an interior point. This will give a contradiction with
the maximum principle. A similar result holds for hypersurfaces M
with mean curvature less than some h, provide M is inside a n-sphere
of mean curvature h. We will need the following theorem (see [5]).

Theorem 3.1 (height estimate). Let Ω ⊂ Hn be a bounded domain.
Assume that H ∈ C1(Ω), and |H(x)| 6 1 or |H(x)| = a (constant).
If u = ut ∈ C0(Ω) ∩ C2(Ω) is a solution of Dirichlet Problem (Pt)
(see (13))

Qt(u) = 0 in Ω

u = tφ on ∂Ω
(14)

then
sup
Ω

|ut| 6 c1,

where c1 is a constant independent of t.

Proof. On account of the previous discussion, we have a priori height
estimates if the mean curvature is less or equal 1. We check the case
H is constant with |H| > 1. Notice that if we prove height estimates
for constant mean curvature less or equal a, then a straightforward
argument will provide height estimates for |H| 6 a. We will proceed
the proof as follows. Let S be a big n-sphere cutting orthogonally the
geodesic hyperplane P containing Ω, such that S involves strictly both
Ω and the graph of φ. Assume that S has mean curvature h ( h is big-
ger than 1, but h ≈ 1). This obvioulsly can be done by compactness.
Now notice that if M is an horizontal graph of mean curvature less
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than h taking boundary value data φ on ∂Ω then necessarily M lies
inside S. Indeed, take a half part of S, say S+ far away from M, doing
horizontal Euclidean translations (hyperbolic isometries). Then move
S+ back towards M. By maximum principle S+ (i.e a translates copy
of S+) cannot touchM during this movement, until it reaches the orig-
inal position. Notice that since the graph of ut has mean curvature tH,
where H = a (constant), we infer that for t varying in some interval
[t0, 1], such that t0H = h we have priori height estimates independent
of t (see [14] or [21]). But we have also a priori height estimates in-
dependent of t for 0 6 t 6 t0 according with the previous geometric
argument. So then we have the desired estimates. �

Combining together a priori boundary gradient estimates (see Theo-
rem 2.1, Theorem 2.2) with height estimates (see Theorem 3.1) we can
infer global gradient estimates by applying some elliptic theory, such
as Lemma 3.1 in [20], Lemma 5.2 in [5], or Theorem 15.2 in [12] . Then
using Ladyzhenskaya and Ural’tseva classical estimates we can infer a
priori global Hölder estimates for the gradient. We have therefore the
following result.

Theorem 3.2 (global gradient estimate). Let Ω be a bounded domain
in Hn with C3 boundary ∂Ω, φ ∈ C3(Ω) and H ∈ C2(Ω), and |H(x)| 6
1 or |H(x)| = a (constant). If u = ut ∈ C2(Ω) is a solution of Dirichlet
Problem (Pt) (see (13)) and if H(x) satisfies condition (∗) then

sup
Ω

|ut|1,β 6 c,

where c is a constant independent of t.

Remark 1. By virtue of classical elliptic regularity, it suffices to as-
sume that H ∈ C1,α(Ω), 0 < α < 1. Indeed, with this assumption if u
is a C2 solution of Dirichlet Problem (Pt) then u is of classe C3 and
the argument developed in [20] or [5] can be applied. Moreover, a more
refined derivation can be done to infer the same result for H ∈ C1(Ω),
working with a weak form of (Pt). This remark can also be extended to
the next existence theorem. But we will not go into such analysis in
this article (see [12]).

Of course we intent to solve Dirichlet Problem (Pt) for t = 1, i.e
the horizontal mean equation in hyperbolic space. We will be able to
carry out this plan by applying degree theory in the light of the a priori
estimates. We now state our main existence result.

Theorem 3.3 (existence theorem). Let Ω be a bounded domain in Hn

with C3 boundary ∂Ω, φ ∈ C3(Ω) and H ∈ C2(Ω), and |H(x)| 6 1 or
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|H(x)| = a (constant). Assume condition (∗) holds. Then Dirichlet
Problem (P ) has a unique solution u ∈ C2(Ω).

Proof. In view of our a priori estimates we will be able to use degree
theory methods to obtain existence of a fixed-point of certain map as-
sociated to the solutions of our Dirichlet Problem (P ).We will proceed
as follows.

Given v ∈ C1,β(Ω) we then define a map Tt : C
1,β(Ω) → C1,β(Ω) by

Tt : v 7→ ut,

where ut the unique solution of the second order elliptic linear problem
n∑

i,j=1

(
(1 + |Dv|2)δij −DivDjv

)
Diju

t − n(1 + |Dv|2)
xn

Dnu
t−

−tn(1 + |Dv|2)3/2

xn
H = 0 in Ω

ut = tφ in ∂Ω

That is ut = Ttv.
Existence and uniqueness of ut is assured by linear elliptic theory.

Moreover, ut ∈ C2,αβ(Ω), by regularity theory. With the aid of Arzela-
Ascoli theorem and global Schauder estimates we deduce Tt is compact.
A standard argument shows continuity of Tt (see [12]). From our esti-
mates we can apply degree theory (see, [1], [4] or [18]) to conclude. We
will proceed the final step of the proof as follows. We define the set

C = {v ∈ C1,β(Ω); |v|1,β < c+ 1}
where c is a constant given by Theorem 3.2. Notice that for our choice,
the equation

(15) ut − Ttu
t = 0

has no solutions in ∂C.
Thus

deg (I − Tt, C, 0) = cst

is well defined and independent of t ∈ [0, 1] , owing to homotopy in-
variance. But according to maximum principle, for t = 0 the trivial
solution u0 ≡ 0 is the unique solution for every v ∈ C1,β(Ω). It follows
that T0 ≡ 0 and we deduce

deg (I − T0, C, 0) = deg (I, C, 0) = 1
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We have henceforth that Dirichlet Problem (P ) has a solution, as
desired.

�
The following Corollaries are immediate consequences of Theorem 3.3.

Corollary 3.1. Let Ω be a bounded domain in Hn with C3 boundary
∂Ω, φ ∈ C3(Ω) and H ∈ C2(Ω). Assume |H(x)| 6 1, ∀ x ∈ Ω. Assume

further H′(y) ≥ n+ 1

n− 1
, ∀ y ∈ ∂Ω. Then there exists a C2 extension u

of φ whose graph has prescribed mean curvature H(x).

Corollary 3.2. Let Ω be a ball entirely contained in n-dimensional
hyperbolic space, i.e Ω ⊂ Hn, and let φ be a smooth function defined
on ∂Ω. Then there exists a minimal solution u in Ω of the horizontal
minimal equation taking the prescribed boundary value data φ on ∂Ω.

4. Non-existence results

Our construction to infer non-existence is based on classical maxi-
mum principle. We shall need the following issue stated here for future
references.

Theorem 4.1 (see [12]). Let Ω be a bounded domain in Rn and let
Γ a C1 open subset of ∂Ω. Then if Q is an elliptic operator and if
u ∈ C0(Ω) ∩ C2(Ω ∪ Γ),
v ∈ C0(Ω) ∩ C2(Ω) satisfies

Q(u) ≥ Q(v) in Ω,

u 6 v in ∂Ω \ Γ,
∂v

∂ν
= −∞ in Γ,

it follows that u ≤ v in Ω.

We will now established our non-existence result. Denote diam (Ω),
the hyperbolic diameter of Ω.

Theorem 4.2. Let Ω be a bounded domain in Hn with C2 boundary
∂Ω. Let us assume that condition (∗) fails at a point y , that is

(n−1)H′(y)+xn(y)Dnd(y) < n|H(y)|, for some y ∈ ∂Ω (†)
where H ∈ C0(Ω) satisfies one of the following conditions:
(i) It does not change sign in Ω and n ≥ 3 or

(ii) It does not change sign in Ω, n = 2 and diam (Ω) <
ln 3

2
or
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(iii) |H| ≥ 1 in Ω. Under one of the above hypothesis it follows that
there exists φ ∈ C∞(Ω), such that Dirichlet Problem (P ) is not solvable.
That is, there exists no solution u of the horizontal prescribed mean
curvature equation in Ω, taking the prescribed boundary value data φ
on ∂Ω.

Proof. We will proceed the proof in two steps. Firstly, we will work in
a neighborhood of y to obtain an upper bound of a solution of Dirichlet
Problem (P ) in this neighborhood. Secondly, we will focus the region
outside of this neighborhood to get a similar majoration. Then, by
putting together these two estimates we will provide an upper bound
of any solution of our Dirichlet Problem (P ) satisfying condition (†).
As we did to obtain a priori gradient estimates, we will again seek
the desired majorations applying fairly estimates in the spirit of the
calculations of the Section 2 by computing Q(ω).

First step of the proof: Let us fix y ∈ ∂Ω, let δ = diam (Ω)
and let a be a positive real number such that a < δ. Define
Ω̃ := {x ∈ Ω; a < d(x) < δ}. We then define ω setting
ω(x) = sup∂Ω\Ba(y) u + ψ(d), where d(x) = dist (x, y) and

ψ : (a, δ) → R is a C2 function to be chosen such that

(16) ψ(δ) = 0, ψ′ 6 0, ψ′(a) = −∞ and ψ′′ ≥ 0

We return now to our elliptic operator Q(ω).We intend to build
ψ = ψ(d) satisfying above properties such that ω is a superso-
lution for our Dirichlet Problem (P ), i.e Q(ω) 6 0 in Ω̃. Let us
start our long and tedious computations to produce the barriers
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recalling

Q(ω) =
n∑

i,j=1

((1 + |Dω|2)δij −DiωDjω)Dijω−

− n

xn

(
Dnω

(1 + |Dω|2)1/2
+H

)
(1 + |Dω|2)3/2

=(1 + |Dω|2)
n∑

i=1

Diiω −
n∑

i,j=1

ψ′2DidDjdDijω−

− n

xn

(
ψ′Dnd

(1 + |Dω|2)1/2
+H

)
(1 + |Dω|2)3/2

=(1 + |Dω|2)

(
ψ′′

n∑
i=1

(Did)
2 + ψ′

n∑
i=1

Diid

)
−

− ψ′2
n∑

i,j=1

(
ψ′′(Did)

2(Djd)
2 + ψ′DidDjdDijd

)
− n

xn

(
ψ′Dnd

(1 + |Dω|2)1/2
+H

)
(1 + |Dω|2)3/2

We will need the following basic formulas in hyperbolic geome-
try.

|Dd| =(
n∑

i=1

(Did)
2)1/2 =

1

xn
(17)

x2n

n∑
i=1

Diid− (n− 2)xnDnd =
n− 1

tanh d
(18)

Substituting (17) in the above expression we get

Q(ω) =(1 + |Dω|2)ψ
′′

x2n
+ (1 + |Dω|2)ψ′

n∑
i=1

Diid−
ψ′2ψ′′

x4n
+
ψ′3Dnd

x3n
−

−n(1 + |Dω|2)
xn

ψ′Dnd−
n

xn
H(1 + |Dω|2)3/2

=(1 + |Dω|2)ψ′
n∑

i=1

Diid+
ψ′′

x2n
− n(1 + |Dω|2)

xn
ψ′Dnd −

− n

xn
H(1 + |Dω|2)3/2 + ψ′3Dnd

x3n

(19)
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Now substituting (18) we discover

(1 + |Dω|2)
x2n

ψ′

(
x2n

n∑
i=1

Diid− (n− 2)xnDnd

)
− 2

(1 + |Dω|2)
xn

ψ′Dnd+

+ ψ′3Dnd

x3n
+
ψ′′

x2n
− n

xn
H(1 + |Dω|2)3/2

=
(1 + |Dω|2)

x2n
ψ′ n− 1

tanh d
− 2

(1 + |Dω|2)
xn

ψ′Dnd+

+ ψ′3Dnd

x3n
+
ψ′′

x2n
− n

xn
H(1 + |Dω|2)3/2

=
(1 + |Dω|2)

x2n
ψ′ n− 1

tanh d
− (1 + |Dω|2)

xn
ψ′Dnd−

− ψ′Dnd

xn
+
ψ′′

x2n
− n

xn
H(1 + |Dω|2)3/2

We thereby obtain

(20) Q(ω) 6 (1 + |Dω|2)
x2n

ψ′(
n− 1

tanh d
− 2) +

ψ′′

x2n
− n

xn
H(1 + |Dω|2)3/2

taking into account (17) and (16). Les us assume momentarily
that H(x) is non-negative. The other case has a same analysis.
Now owing to our choice we see that the quantity µ1 = inf

Ω
(n−

1− 2 tanh d) is strictly positive, hence

Q(ω) 6(1 + |Dω|2)
x2n

(
n− 1− 2 tanh d

tanh d
ψ′ + x2n

ψ′′

ψ′2

)
61 + |Dω|2

x2n

(
µ1ψ

′

tanh d
+
µ2ψ

′′

ψ′2

)
where µ2 = sup

Ω
x2n.

Of course, if n ≥ 3 (case (i)) then µ1 is always strictly posi-
tive. We then define

ψ(d) = µ−1/2

∫ δ

d

(
ln

sinh t

sinh a

)−1/2

dt, where µ :=
µ1

µ2

= µ(diam(Ω), inf
Ω
xn, sup

Ω
xn, n).

It is straigtforward to check that ω is the required barrier. Ob-
serve first that Q(ω) 6 0 in Ω̃. Now in view of Theorem 4.1 we
have therefore u(x) 6 ω(x), x ∈ Ω̃. From this it follows that,

(21) sup
∂Ba(y)∩Ω

u 6 ω(a) = sup
∂Ω\Ba(y)

u+ ψ(a).
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By our assumptions if n = 2 (case (ii)) then µ1 is positive hence
we arrive analagously to the same conclusion. Let us turn to the
estimates to treat the remaining case. We turn now to case(iii).
Employing (20) using H ≥ 1 we infer

−n(1 + |Dω|2)3/2

xn
H 6− n

(1 + |Dω|2)3/2

xn

6− n
(1 + |Dω|2)

xn
|Dω| = nψ′ (1 + |Dω|2)

x2n

We conclude henceforth

Q(ω) 6(1 + |Dω|2)
x2n

ψ′(
n− 1

tanh d
+ n− 2) +

ψ′′

x2n

6(1 + |Dω|2)
x2n

ψ′(
n− 1

tanh d
+ n− 2) +

ψ′′(1 + |Dω|2)
ψ′2

=
1 + |Dω|2

x2n

[(
n− 1

tanh d
+ n− 2

)
ψ′ + x2n

ψ′′

ψ′2

]
61 + |Dω|2

x2n

(
µ1

tanh d
ψ′ + µ2

ψ′′

ψ′2

)
where

µ1 = inf
Ω
(n− 1 + (n− 2) tanh d) > 0, µ2 = sup

Ω
x2n

We may therefore select

ψ(d) = µ−1/2

∫ δ

d

(
ln

sinh t

sinh a

)−1/2

dt, where
µ1

µ2

= µ = µ(diam(Ω), inf
Ω
xn, sup

Ω
xn, n).

Clearly, ω satisfies Q(ω) 6 0 in Ω̃ thus we arrive to the same
conclusion as before, namely

sup
∂Ba(y)∩Ω

u 6 sup
∂Ω\Ba(y)

u+ ψ(a)

First step of the proof is now completed.

Second step of the proof: We wish now examine the estimates
in the complementary domain Ωε,a := {x ∈ Ω; ϵ < d(x) < a}.
We observe that until now we have not use condition (†). We
will use it now. Let us assume that there exists η > 0 such that

(22) (n− 1)H′(y) + xn(y)Dnd(y) 6 nH(y)− 5η.

Let S ⊂ Rn be a smooth quadric surface satisfying
(i) HS(y) 6 H′(y) + η
(ii) S∩Ba(y) ⊂ Ω Let us consider now distance function d(x) =
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dist(x, S), in Ωε,a, choosing a suficiently small to ensures smooth-
ness of d(x). We want to find ω = sup

∂Ba(y)∩Ω
u+Ψ(d) where Ψ :

(ϵ, a) → R, 0 < ϵ < a such that Ψ(a) = 0, Ψ′ ≤ 0, Ψ′(ϵ) = −∞
and Ψ′′ ≥ 0. Furthermore, we also want Q(ω) 6 0 in Ωε,a. As
before, we will pass to perform the computation of Q(ω) us-
ing (17) once again. Hence

Q(ω) = Ψ′(1 + |Dω|2)
n∑

i=1

Diid+
Ψ′3

x3n
Dnd+

Ψ′′

x2n
− nΨ′

xn
(1 + |Dω|2)Dnd−

− n

xn
H(1 + |Dω|2)3/2

Using the identity

Ψ′3

x3n
Dnd =

Ψ′

xn
(1 + |Dω|2)Dnd−

Ψ′Dnd

xn

We therefore obtain

Q(ω) =
Ψ′

x2n
(1 + |Dω|2)

(
x2n

n∑
i=1

Diid− (n− 1)xnDnd

)
− Ψ′Dnd

xn
+

Ψ′′

x2n

− n

xn
H(1 + |Dω|2)3/2

We observe that

(1+|Dω|2)3/2 = −Ψ′

xn
(1+|Dω|2)+Ψ′(1+|Dω|2)o(1) (as |Dω| → ∞)

Since

−Ψ′

xn
Dnd 6 −Ψ′

x2n
and

Ψ′′

x2n
6 Ψ′′

x2n

(1 + |Dω|2)
|Dw|2

= (1 + |Dω|2) Ψ
′′

Ψ′2

We infer

Q(ω) 6 Ψ′

x2n
(1 + |Dω|2)

[
x2n

n∑
i=1

Diid− (n− 1)xnDnd+ nH+

+(n sup
Ω

|H|+ 1)o(1) +

(
sup
Ω
x2n

)
Ψ′′

Ψ′3

]
.

Let us denote now by St = {x ∈ Ω; d(x) = t} the parallel
hypersurface to S at a fixed distance t. In view of formula (9),
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we can write

x2n

n∑
i=1

Diid− (n− 2)xnDnd = −(n− 1)HSt

where HSt is the mean curvature of St.
Now applying a standard continuity argument we have

(i) |H(x)−H(y)| < η

n

(ii) |x2n(x)
n∑

i=1

Diid(x)− x2n(y)
n∑

i=1

Diid(y)| < η

(iii) |xn(x)Dnd(x)− xn(y)Dnd(y)| <
η

n− 1

for x ∈ Ωε,a (recall that y ∈ ∂Ω is fixed). Hence

Q(ω) 6 Ψ′(1 + |Dω|2)
x2n

[
x2n(y)

n∑
i=1

Diid(y)− (n− 1)xn(y)Dnd(y)+

+nH(y)− 3η + o(1) +

(
sup
Ω
x2n

)
Ψ′′

Ψ′3

]
6 Ψ′(1 + |Dω|2)

x2n
[−(n− 1)Hs(y)− xn(y)Dnd(y) + nH(y)−

− 3η + o(1) +

(
sup
Ω
x2n

)
Ψ′′

Ψ′3

]

6 Ψ′(1 + |Dω|2)
x2n

[−(n− 1)H′(y)− xn(y)Dnd(y) + nH(y)−

− 4η + o(1) +

(
sup
Ω
x2n

)
Ψ′′

Ψ′3

]
We now using condition (†) in the form given by (22) we have

Q(ω) 6Ψ′(1 + |Dω|2)
x2n

[
5η − 4η + o(1) +

(
sup
Ω
x2n

)
Ψ′′

Ψ′3

]
=

Ψ′(1 + |Dω|2)
x2n

[
η + o(1) +

(
sup
Ω
x2n

)
Ψ′′

Ψ′3

]
We may define now Ψ(d) = k((a− ϵ)1/2− (d− ϵ)1/2) , ϵ < d < a,
hence we obtain Q(ω) 6 0 in Ωε,a, taking k suficiently big.
According to Theorem 4.1 we have therefore

u(x) 6 sup
∂Ba(y)∩Ω

u+Ψ(d(x)), ∀ x ∈ Ωε,a
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Thus

u(x) 6 sup
∂Ba(y)∩Ω

u+Ψ(ϵ), ∀ x ∈ Ωε,a

= sup
∂Ba(y)∩Ω

u+ k(a− ϵ)1/2, ∀ x ∈ Ωε,a

(23)

We lastly combine estimates (21) and (23) letting ϵ → 0+.
We conclude therefore

u(y) 6 sup
∂Ω\Ba(y)

u+ ψ(a) + k(a)1/2

This means u cannot be arbitrarily prescribed on ∂Ω. That is,
there exists a smooth function φ in Ω such that our Dirich-
let Problem (P ) taking boundary value data φ on ∂Ω is not
solvable.

�
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