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We consider the problem of classifying the orbits within a tower of fibrations with fibers
diffeomorphic to projective planes and we generalize the tower of fiber bundles due to
J. Semple. This tower was rediscovered by Montgomery and Zhitomirskii in the context
of subriemannian geometry. This tower admits a natural action of the diffeomorphism
group of affine 3-space and these orbits correspond to classes of Goursat multi-flags. We
demonstrate that it is possible to classify many of these orbits by elementary means by
appealing to some basic tools in projective geometry, and the combinatorics of spatial
curves.

© 2013 Published by Elsevier Masson SAS on behalf of Académie des sciences.

r é s u m é

Nous nous intéressons au problème de classification des orbites dans une tour de fibration,
où les fibres sont difféomorphes à des plans projectifs, généralisant ainsi les tours de
fibrés projectives de J. Semple. Cette tour a été redécouverte par R. Montgomery et M.
Zhitomirskii dans le contexte de la géométrie sub-riemannienne. Cette tour admet une
action naturelle du groupe des difféomorphismes de l’espace affine de dimension 3, et
ces orbites correspondent à des classes de multi-drapeaux de Goursat. Nous démontrons
qu’il est possible de classifier un grand nombre de ces orbites de manière élémentaire
en utilisant des outils classiques de géométrie projective et la combinatoire des courbes
spatiales.

© 2013 Published by Elsevier Masson SAS on behalf of Académie des sciences.

. Introduction

In this note, we generalize the Semple tower from enumerative algebraic geometry [15,10,7] to study the local theory
f Goursat multi-flags. These are a class of nonholonomic distributions that generalizes the contact distributions of J (n;k);
he space of k-jets of maps from R to R

n .
In [5], we worked with a tower of fiber bundles, denoted by S(n;k), containing the space J (n;k) as an open dense

ubset. Each space S(n;k) comes equipped with a geometric distribution �k . The link between Goursat multi-flags and the
emple tower is the following:
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Fig. 1. Prolongations.

Fig. 1. Prolongements.

the classification of Goursat multi-flags up to local equivalence is equivalent to the classification of points in the Semple tower
S(n;k) up to symmetry.

We present here the classification of Goursat 2-flags of small length, and investigate the orbits that arise from the
Diff(A3) action on S(2;4). The methods, however, are fully applicable to Goursat k-flags as well. For brevity, we shall
restrict ourselves to a couple illustrative examples. Our main results are summarized in Theorem 3.1.

2. Definitions and statement of main results

A geometric distribution hereafter denotes a linear subbundle of the tangent bundle.

2.1. Prolongation

Let the pair (Z ,�) denote a manifold Z of dimension d equipped with a distribution � of rank r. We denote by P(�)

the projectivization of �. As a manifold,

Z 1 := P(�)

has dimension d + (r − 1).
Given an analytic horizontal curve c : (I,0) → (Z ,q), where I is some open interval in R containing the origin and

c(0) = q, we can naturally define a new curve:

c1 : (I,0) → (
Z 1, (q, �)

)

with image in Z 1 and where � = span{ dc
dt (0)} ⊂ �q . This new curve, c1(t), is called the prolongation of c(t). This procedure

can be iterated and the k-th prolongation of the curve c(t) is denoted by ck(t).
The manifold Z 1 also comes equipped with a distribution �1 called the Cartan prolongation of � [2]. Let π : Z 1 → Z be

the projection map (p, �) �→ p. Then:

�1(p, �) = dπ−1
(p,�)(�).

It is easy to check that �1 is also a distribution of rank r.
By a symmetry of the pair (Z ,�) we mean a local diffeomorphism Φ of Z that preserves the subbundle �. The symme-

tries of (Z ,�) can also be prolonged to symmetries Φ1 of (Z 1,�1) as follows. Define:

Φ1(p, �) := (
Φ(p),dΦp(�)

)
.
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ince dΦp is invertible, the second component is well defined as a projective map. This new transformation of (Z 1,�1) is
alled the prolongation of Φ . Prolongation of symmetries can also be iterated as well and the k-th prolongation is denoted
y Φk .

.2. Constructing the Semple Tower

efinition 2.1. The Semple Tower is a sequence of manifolds with distributions, (S(n;k),�k), together with fibrations:

· · · → S(n;k) → S(n;k − 1) → ·· · → S(n;1) → S(n;0) = A
n+1

nd we write πk,i : S(n;k) → S(n; i) for the respective bundle projections.

efinition 2.2. Diff(n) is taken to be the pseudogroup of diffeomorphism germs of A
n .

The following result found in [16] by Shibuya and Yamaguchi will be important for our classification of points within
he Semple Tower.

heorem 2.1. For n > 1 and k > 0 any local diffeomorphism of S(n;k) preserving the distribution �k is the restriction of the k-th
rolongation of a local diffeomorphism Φ ∈ Diff(n).

Shibuya and Yamaguchi also point out that this is a result due to A. Bäcklund in [3].

emark 2.2. From now on we will write S(k) to denote S(2;k).

efinition 2.3. Two points p,q in S(k) are said to be equivalent, written p ∼ q, if there exists a Φ ∈ Diff(3) such that
k(p) = q.

efinition 2.4. We say that a curve or curve germ c : (R, 0) → (A3, p0) realizes the point pk ∈ S(k) if ck(0) = pk .

efinition 2.5. Two curves γ , σ in R
3 are RL equivalent, written γ ∼ σ , if there exists a diffeomorphism germ Φ ∈ Diff(3)

nd a reparametrization τ ∈ Diff0(1) such that σ = Φ ◦ γ ◦ τ .

. Main results and ideas of proofs

From our recent work in [5] we have been able to completely classify the points within the first four levels of the tower.
ur findings are summarized by the following.

heorem 3.1 (Orbit counting per level). In the n = 2 (or spatial) Semple Tower the number of orbits within each of the first four levels
f the tower are as follows:

– Level 1 has 1 orbit,
– Level 2 has 2 orbits,
– Level 3 has 7 orbits,
– Level 4 has 34 orbits.

.1. Idea of proofs

The proofs use the singular curves approach first proposed in [11] as well as the RC coding system, which partitioned
he various points within the tower [11,6]. One can then refine the RC coding system and define the RVT code, where
he letter C is then replaced with either the letter V or the letters T or L with various decorations attached to them.
f two points have different RVT codes, then they are necessarily inequivalent. We have highlighted the ways that these
yperplanes and distinguished lines arise; see Fig. 2. The concrete details about the RVT coding system can be found in [5].
e found that the curve approach did not suffice in classifying points within the fourth level and higher within the tower;

his lead us to develop the isotropy method. The isotropy method helped us understand the incidence relations between
he various critical hyperplanes and how these critical directions arise within the tower. Fig. 2a shows that there is only

single vertical hyperplane, the tangent space to the fiber, over a regular (R) point. Fig. 2b shows there are two critical
yperplanes over a vertical (V ) or tangency (T ) point. Fig. 2c tells us that over an L point there is a total of three critical
yperplanes. More details and specifics about how these hyperplanes arise within the tower can be found in [5] and [6].
hile the isotropy method allows one to classify points within the various RVT classes within the Semple Tower, its only

imitation is that it can be a computationally intensive process. As a result, we have begun programming and applying this
ethod with Mathematica.
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Fig. 2. Arrangement of critical hyperplanes.

Fig. 2. Arrangement d’hyperplans critiques.

3.2. How the classification methods work in practice

3.2.1. The curve method illustrated: the class RVT
Any curve realizing a point in this class is either of the form c1(t) = (t3, t4, t5) or c2(t) = (t3, t4,0). To show this, we start

with an analytic curve and looks at the restrictions on the coefficients in each of the component functions that come from
the way the distribution �3 is described in Kumpera Ruiz coordinates [6] and how the curves then project down to R

3.
Then we apply semigroup and basic singularity theory techniques outlined in [1] to see which terms can be eliminated
from the projected curve in R

3 to give the normal forms c1 and c2. Then since it can be shown that these two curves are
not RL equivalent, and since prolongation and projection commute, this shows that when the two curves are prolonged to
the third level of the tower and evaluated at t = 0, we will have two inequivalent points, i.e. c3

1(0) � c3
2(0). Hence the class

RVT is comprised of two orbits.

3.2.2. The isotropy method illustrated: the class RVLT1
We want to summarize the computations done for the class RVLT1 using the notation from [5] for an R V T class

that was not discussed in the paper. Using the isotropy method approach, our local diffeomorphisms are of the form
Φ3(x, y, z, u, v, u2, v2, u3, v3) = (φ1, φ2, φ3, ũ, ṽ, ũ2, ṽ2, ũ3, ṽ3) with:

˜ X (1) · φ2
˜ X (2) · φ1

˜ X (3) · ũ
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u =
X (1) · φ1

, u2 =
X (2) · ũ

, u3 =
X (3) · ṽ2

ṽ = X (1) · φ3

X (1) · φ1
, ṽ2 = X (2) · ṽ

X (2) · ũ
, ṽ3 = X (3) · ũ2

X (3) · ṽ2
.

Here, X (1) = u ∂
∂ y + v ∂

∂z + ∂
∂x , X (2) = u2 X (1) + ∂

∂u + v2
∂
∂v , X (3) = u3 X (2) + v3

∂
∂u2

+ ∂
∂v2

and the restrictions on our component

functions are φ2
x (0) = 0, φ3

x (0) = 0, and φ3
y = 0. We apply the pushforward of Φ3 to the line � = b ∂

∂v2
+ c ∂

∂v3
, with b, c ∈

R− {0}3 in the distribution �3 defined by:

dy − u dx = 0, dx − u2 du = 0, du − u3 dv2 = 0

dz − v dx = 0, dv − v2 du = 0, du2 − v3 dv2 = 0,

and evaluating at p3 = (x, y, z, u, v, u2, v2, u3, v3) we get: Φ3∗ (�) = span{b φ3
z (0)

φ2
y(0)

∂
∂v2

+ c (φ1
x (0))2

φ3
z (0)

∂
∂v3

}. Notice that φ1
x (0) 	= 0,

φ2
y(0) 	= 0, and φ3

z (0) 	= 0. However, we can choose φ1
x (0), φ2

y(0), and φ3
z (0) to anything else other than zero. Since our

distribution �3(p3) is coframed by dv2, du3, dv3 and with �′ ≡ Φ3∗ (�), we get [du2|�′ : du3|�′ : dv3|�′ ] = [ φ3
z (0)

φ2
y(0)

: 0 : (φ1
x (0))2

φ3
z (0)

] =
[1 : 0 : φ2

y(0)(φ1
x (0))2

(φ3
z (0))2 ]. This gives a single orbit for the class RVLT1 and we can represent this orbit by the direction � = ∂

∂v2
+ ∂

∂v3

in �3(p3).

3 This restriction on b and c is to ensure that the line � is in the T1 hyperplane.
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4. Conclusion

Our work with the Semple Tower has been primarily focussed on classifying points up to symmetry at various levels
within the tower. As was pointed out in [11], it is possible to end up with moduli appearing within various RVT classes.
This means that there is a whole continuum’s worth of points in a particular RVT class that are inequivalent. We are inter-
ested in determining at which level does this first occur in the n = 2 Semple Tower. We believe that one starting point is to
look at the RVT classes of the form R R p V Rq V Rs for p,q, s nonnegative integers. During the summer of 2012 one of the au-
thors worked on this problem with G. Kennedy (Ohio State) and S. Colley (Oberlin) and found that the class R R V R R V R R R
has moduli occurring at the underlined R . Recently G. Kennedy and S. Colley contacted the authors concerning the ap-
pearance of moduli that were found in a number of experiment that they performed using the isotropy method. A subset
of the computations showed that the following RVT classes have moduli occurring at the underlined R ’s: R R V R R V R R R ,
R R V R R R V R R R , and R R R V R R R V R R R R R R R . They have conjectured that when p = 0 there are no moduli, p = 1 there is a
single modulus, p = 2 two moduli appear, and in general p moduli appear when p > 1. They formed this conjecture based
on looking at the restrictions on the component functions within the isotropy group at each level in these RVT classes by
using Mathematica. We have been working on this conjecture using the ideas of the isotropy method. More concretely, we
are looking at the ways in which the local diffeomorphism group prolongs and acts on the points within these classes and
the way these RVT classes place restrictions on the symmetries in the isotropy group. We believe that by understanding
these examples it will help us better comprehend how moduli arise in other more complicated RVT codes.
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