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Abstract

In this paper, we consider domino tilings of regions of the formD×[0, n],
where D is a simply connected planar region and n ∈ N. It turns out that,
in nontrivial examples, the set of such tilings is not connected by flips,
i.e., the local move performed by removing two adjacent dominoes and
placing them back in another position. We define an algebraic invariant,
the twist, which partially characterizes the connected components by flips
of the space of tilings of such a region. Another local move, the trit, consists
of removing three adjacent dominoes, no two of them parallel, and placing
them back in the only other possible position: performing a trit alters the
twist by ±1. We give a simple combinatorial formula for the twist, as
well as an interpretation via knot theory. We prove several results about
the twist, such as the fact that it is an integer and that it has additive
properties for suitable decompositions of a region.

1 Introduction

Tiling problems have received a lot of attention in the second half of the twentieth
century, two-dimensional domino and lozenge tilings in particular. For instance,
Kasteleyn [12], Conway [6], Thurston [23], Elkies, Propp et al. [11, 5, 7], Kenyon
and Okounkov [14, 13] have come up with very interesting techniques, ranging
from abstract algebra to probability. More relevant to the discussion in this paper
are the problems of flip accessibility (e.g., [22]).

Attempts to generalize some of these techniques to the three-dimensional
case were made. The problem of counting domino tilings, even of contractible
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regions, is known to be computationally hard (see [19]), but some asymptotic
results, even for higher dimensions, date as far back as 1966 (see [10, 4, 8]). In a
different direction, some “typically two-dimensional” properties were carried over
to specific families of three-dimensional regions (see [20, 15, 3]).

Others have considered difficulties with connectivity by local moves in di-
mension higher than two (see, e.g., [20]). We propose an algebraic invariant that
could help understand the structure of connected component by flips in dimension
three.

Figure 1: A tiling of a 4× 4× 4 box.

In this paper, we investigate tilings of contractible regions by domino brick
pieces, or dominoes, which are simply 2× 1× 1 rectangular cuboids. An example
of such a tiling is shown in Figure 1. While this 3D representation of tilings may
be attractive, it is also somewhat difficult to work with. Hence, we prefer to work
with a 2D representation of tilings, which is shown in Figure 2.

A key element in our study is the concept of a flip, which is a straightforward
generalization of the two-dimensional one. We perform a flip on a tiling by
removing two (adjacent and parallel) domino bricks and placing them back in
the only possible different position. The removed pieces form a 2 × 2 × 1 slab,
in one of three possible directions (see Figure 3). The flip connected component
of a tiling t of a three-dimensional region R is the set of all tilings of R that can
be reached from t after a sequence of flips. It turns out that for large regions
the number of flip connected components is also large, but some of them may
contain many tilings. One of the aims of this paper is to study such connected
components.

As in [18], we also consider the trit, which is a move that happens within a
2× 2× 2 cube with two opposite “holes”, and which has an orientation (positive
or negative). More precisely, we remove three dominoes, no two of them parallel,
and place them back in the only other possible configuration (see Figure 4).
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x

y

z ∈ [0, 1] z ∈ [1, 2] z ∈ [2, 3] z ∈ [3, 4]

Figure 2: A tiling of the box B = [0, 4]× [0, 4] × [0, 4] box in our notation. The
x and y axis are drawn, and z points towards the paper, so that floors to the
right have higher z coordinates. Dominoes that are parallel to the x or y axis are
represented as 2D dominoes, since they are contained in a single floor. Dominoes
parallel to the z axis are represented as circles, with the following convention:
if the corresponding domino connects a floor with the floor to the left of it, the
circle is painted red; otherwise, it is painted white. Thus, for example, in Figure
2, each of the four white circles on the leftmost floor represents the same domino
as the red circles on the floor directly to the right of it. The squares highlighted in
yellow represent cubes whose centers have the same x and y coordinates. Notice
the top two yellow cubes are connected by a domino parallel to the z axis, as well
as the bottom two. The squares highlighted in green also represent cubes whose
center have the same x and y coordinates, but the dominoes involving these cubes
are not parallel to the z axis.

(2) (1) (3)

(4)(5) (6)

Figure 3: All flips available in tiling (1). The 2× 2× 1 slabs involved in the flips
taking (1) to (2), (3) and (4) are highlighted: they illustrate the three possible
relative positions of dominoes in a flip.

Figure 4: An example of a negative trit. The affected cubes are highlighted in
yellow.
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A cylinder is a region of the form D× [0, n] (possibly rotated), where D ⊂ R2

is a simply connected planar region with connected interior. In this paper, we
introduce an algebraic invariant, the twist Tw(t), defined in Section 3 for tilings
of a cylinder.

In [18], we study cylinders with n = 2, called duplex regions. Although they
are related to the general theory, tilings of these regions have some interesting
characteristics of their own; in particular, we can define a polynomial Pt(q) for
tilings of duplex regions which is invariant by flips and which is finer than the
twist. However, this construction breaks down when the duplex region is embed-
ded in a region with more floors (see [18] for details).

Theorem 1. Let R be a cylinder, and t a tiling of R. The twist Tw(t) is an
integer with the following properties:

(i) If a tiling t1 is reached from t0 after a flip, then Tw(t1) = Tw(t0).

(ii) If a tiling t1 is reached from t0 after a single positive trit, then Tw(t1) −
Tw(t0) = 1.

(iii) If R is a duplex region, then Tw(t) = P ′t(1) for any tiling t of R.

(iv) Suppose a cylinder R =
⋃

1≤i≤mRi, where each Ri is a cylinder (they need
not have the same axis) and such that i 6= j ⇒ int(Ri)∩ int(Rj) 6= ∅. Then
there exists a constant K ∈ Z such that, for any family (ti)1≤i≤n, ti a tiling
of Ri,

Tw

( ⊔
1≤i≤m

ti

)
= K +

∑
1≤i≤m

Tw(ti).

The definitions of twist are somewhat technical and involve a relatively lengthy
discussion. We shall give two different but equivalent definitions: the first one,
given in Section 3, is a sum over pairs of dominoes. At first sight, this formula
gives a number in 1

4
Z and depends on a choice of axis. However, it turns out

that, for cylinders, this number is an integer, and different choices of axis yield
the same result. The proof of this claim will be completed in Section 6, and
it relies on the second definition, which uses the concepts of writhe and linking
number from knot theory (see, e.g., [1]).

One can ask whether the twist can be extended to a broader class of regions.
The following (see [16]) holds: letR be a simply connected region (not necessarily
a cylinder), t0 and t1 be two tilings of R. Suppose B ⊃ R is a box and t∗ is a
tiling of B \R (it is not true for arbitrary regions R that B and t∗ exist). Define
TW(t0, t1) = Tw(t0 t t∗)− Tw(t1 t t∗): this turns out to depend neither on the
choice of box B nor on the choice of tiling t∗. Therefore, if we choose a base
tiling t0 and define Tw(t) = TW(t, t0), then Tw(t) satisfies items (i) and (ii) in
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Theorem 1. Different choices of base tiling only alter the twist by an additive
constant.

In addition to the combinatorial and knot-theoretic interpretations developed
in this article, it is also possible to give homological interpretations for the twist.
These homological constructions are reminiscent of the two-dimensional height
functions (see [23]), although they behave more like “height forms”. The concept
of flux (or flow), as in [22] and [21], also becomes relevant. Although we will not
discuss these constructions here, this homological point of view inspired many of
our definitions.

One might also ask what the possible values for the twist of a certain region
are. Some results in this direction are proved in [16]: for instance, it turns out
that, for a box of dimensions L ×M × N with L ≥ M ≥ N (and LMN even),
the maximum possible value for the twist is of the order of LMN2.

The present paper is structured in the following manner: Section 2 introduces
some basic definitions and notations that will be used throughout the paper. In
Section 3, we define the invariant for cylinders, and prove its most basic prop-
erties. In Sections 4, 5, 6 and 7, we present different aspects of a connection
between the twist of tilings and a few classical concepts from knot theory. Sec-
tion 4 contains the “topological groundwork”, which consists of a number of
definitions and results that help establish topological interpretations of the twist,
and which are extensively used in the sections that follow it. In Section 5, we
introduce a different formula for the twist of cylinders, and show that this new
formula allows us to prove (once again, via topology) that the twist must always
be an integer. In Section 6, we prove that the value of the twist of cylinders does
not depend on the choice of axis, which is one of the main results in the paper.
In Section 7, we discuss additive properties of the twist, and prove item (iv) in
Theorem 1. Finally, Section 8 contains some examples and counterexamples that
help illustrate the theory.

This paper closely corresponds to part of the first author’s PhD thesis [16];
the authors thank the examination board for helpful comments and suggestions.
The authors are also thankful for the generous support of CNPq, CAPES and
FAPERJ (Brazil).

2 Definitions and Notation

This section contains general notations and conventions that are used throughout
the article, although definitions that involve a lengthy discussion or are intrinsic
of a given section might be postponed to another section.

If n is an integer, n] will denote n + 1
2

(in music theory, D] is a half tone
higher than D in pitch). We also define Z] to be the set {n]|n ∈ Z}.
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Given ~v1, ~v2, ~v3 ∈ R3, det(~v1, ~v2, ~v3) = ~v1 · (~v2×~v3) denotes the determinant of

the 3× 3× 3 matrix whose i-th line is ~vi, i = 1, 2, 3. If β = (~β1, ~β2, ~β3) is a basis,

write det(β) = det(~β1, ~β2, ~β3).

We denote the three canonical basis vectors as ~i = (1, 0, 0), ~j = (0, 1, 0) and
~k = (0, 0, 1). We denote by ∆ = {~i,~j, ~k} the set of canonical basis vectors, and

Φ = {±~i,±~j,±~k}. Let B = {β = (~β1, ~β2, ~β3)|~βi ∈ Φ, det(β) = 1} be the set of
positively oriented bases with vectors in Φ.

A basic cube is a closed unit cube in R3 whose vertices lie in Z3. For (x, y, z) ∈
Z3, the notation C

(
x], y], z]

)
denotes the basic cube (x, y, z) + [0, 1]3, i.e., the

closed unit cube whose center is
(
x], y], z]

)
; it is white (resp. black) if x + y + z

is even (resp. odd). If C = C
(
x], y], z]

)
, define color(C) = (−1)x+y+z+1, or, in

other words, 1 if C is black and −1 if C is white. A region is a finite union of
basic cubes. A domino brick or domino is the union of two basic cubes that share
a face. A tiling of a region is a covering of this region by dominoes with pairwise
disjoint interiors.

We sometimes need to refer to planar objects. Let π denote either R2 or a
basic plane contained in R3, i.e., a plane with equation x = k, y = k or z = k for
some k ∈ Z. A basic square in π is a unit square Q ⊂ π with vertices in Z2 (if
π = R2) or Z3. A planar region D ⊂ π is a finite union of basic squares.

A region R is a cubiculated cylinder or multiplex region if there exist a basic
plane π with normal vector ~v ∈ ∆, a simply connected planar region D ⊂ π with
connected interior and a positive integer n such that

R = D + [0, n]~v = {p+ s~v|p ∈ D, s ∈ [0, n]};

we usually call R a cylinder for brevity. The cylinder R above has base D, axis
~v and depth n. For instance, a cylinder with axis ~k and depth n can be written
as D × [k, k + n], where D ⊂ R2. A ~v-cylinder means a cylinder with axis ~v. A
duplex region (see [18]) is a cylinder with depth 2.

We sometimes want to point out that the hypothesis of simple connectivity
(of a cylinder) is not being used: therefore, a pseudocylinder with base D, axis
~v and depth n has the same definition as above, except that the planar region
D ⊂ π is only assumed to have connected interior (and is not necessarily simply
connected).

A box is a region of the form B = [L0, L1] × [M0,M1] × [N0, N1], where
Li,Mi, Ni ∈ Z. Boxes are special cylinders, in the sense that we can take any
vector ~v ∈ ∆ as the axis. In fact, boxes are the only regions that satisfy the
definition of cylinder for more than one axis.

Regarding notation, Figures 2, 3 and 4 were drawn with β = (~i,~j, ~k) in mind.

However, any β ∈ B allows for such representations, as follows: we draw ~β3 as
perpendicular to the paper (pointing towards the paper). If π = ~β⊥3 , we then



Domino tilings of three-dimensional regions — October 27, 2015 7

draw each floor R ∩ (π + [n, n + 1]~β3) as if it were a plane region. Floors are
drawn from left to right, in increasing order of n.

The flip connected component of a tiling t of a region R is the set of all tilings
of R that can be reached from t after a sequence of flips.

Suppose t is a tiling of a region R, and let B = [l, l+2]× [m,m+2]× [n, n+2],
with l,m, n ∈ N. Suppose B ∩R contains exactly three dominoes of t, no two of
them parallel: notice that this intersection can contain six, seven or eight basic
cubes of R. Also, a rotation (it can even be a rotation, say, in the XY plane),
can take us either to the left drawing or to the right drawing in Figure 5.

Figure 5: The anatomy of a positive trit (from left to right). The trit that takes
the right drawing to the left one is a negative trit. The squares with no dominoes
represent basic cubes that may or may not be in R (see Figure 4 for an example).

If we remove the three dominoes of t contained in B ∩ R, there is only one
other possible way we can place them back. This defines a move that takes t to a
different tiling t′ by only changing dominoes in B ∩R: this move is called a trit.
If the dominoes of t contained in B∩R are a plane rotation of the left drawing in
Figure 5, then the trit is positive; otherwise, it’s negative. Notice that the sign of
the trit is unaffected by translations (colors of cubes don’t matter) and rotations
in R3 (provided that these transformations take Z3 to Z3). A reflection, on the
other hand, switches the sign (the drawing on the right can be obtained from the
one on the left by a suitable reflection).

3 The twist for cylinders

For a domino d, define ~v(d) ∈ Φ to be the center of the black cube contained in d
minus the center of the white one. We sometimes draw ~v(d) as an arrow pointing
from the center of the white cube to the center of the black one.

For a set X ⊂ R3 and ~u ∈ Φ, we define the (open) ~u-shade of X as

S~u(X) = int((X + [0,∞)~u) \X) = int
(
{x+ s~u ∈ R3|x ∈ X, s ∈ [0,∞)} \X

)
,

where int(Y ) denotes the interior of Y . The closed ~u-shade S̄~u(X) is the closure of
S~u(X). We shall only refer to ~u-shades of unions of basic cubes or basic squares,
such as dominoes.
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Figure 6: Tiling of a 4 × 4 × 4 box, with three distinguished dominoes (painted

yellow, green and cyan), whose ~k-shades are highlighted in the same color as
they are. Notice that the yellow shade intersects four dominoes, the green shade
intersects three, and the cyan shade, only one.

Given two dominoes d0 and d1 of t, we define the effect of d0 on d1 along ~u,
as:

τ ~u(d0, d1) =

{
1
4

det(~v(d1), ~v(d0), ~u), d1 ∩ S~u(d0) 6= ∅
0, otherwise

In other words, τ ~u(d0, d1) is zero unless the following three things happen: d1

intersects the ~u-shade of d0; neither d0 nor d1 are parallel to ~u; and d0 is not
parallel to d1. When τ ~u(d0, d1) is not zero, it’s either 1/4 or −1/4 depending on
the orientations of ~v(d0) and ~v(d1).

For example, in Figure 6, for ~u = ~k, the yellow domino dY has no effect on any

other domino: τ
~k(dY , d) = 0 for every domino d in the tiling. The green domino

dG, however, affects the two dominoes in the rightmost floor which intersect its
~k-shade, and τ

~i(dG, d) = 1/4 for both these dominoes.

If t is a tiling, we define the ~u-pretwist as

T ~u(t) =
∑
d0,d1∈t

τ ~u(d0, d1).

For example, the tiling on the left of Figure 4 has ~k-pretwist equal to 1. To
see this, notice that each of the four dominoes of the leftmost floor that are not
parallel to ~k has nonzero effect along ~k on exactly one domino of the rightmost
floor, and this effect is 1/4 in each case. The reader may also check that the
~k-pretwist of the tiling in Figure 6 is 0.

Lemma 3.1. For any pair of dominoes d0 and d1 and any ~u ∈ Φ, τ ~u(d0, d1) =
τ−~u(d1, d0). In particular, for a tiling t of a region we have T−~u(t) = T ~u(t).

Proof. Just notice that d1 ∩ S~u(d0) 6= ∅ if and only if d0 ∩ S−~u(d1) 6= ∅, and
det(~v(d1), ~v(d0), ~u) = det(~v(d0), ~v(d1),−~u).

Translating both dominoes by a vector with integer coordinates clearly does
not affect τ ~u(d0, d1), as det(~v(d1), ~v(d0), ~u) = det(−~v(d1),−~v(d0), ~u). Therefore,
if t is a tiling and f(p) = p+ b, where b ∈ Z3, then T ~u(f(t)) = T ~u(t).
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Lemma 3.2. Let R be a region, and let ~w ∈ ∆. Consider the reflection r = r~w :
R3 → R3 : p 7→ p−2(p · ~w)~w; notice that r(R) is a region. If t is a tiling of R and
~u ∈ Φ, then the tiling r(t) = {r(d), d ∈ t} of r(R) satisfies T ~u(r(t)) = −T ~u(t).

Proof. Given a domino d of t, notice that ~v(r(d)) = −r(~v(d)) and that S~u(r(d)) =
r(Sr(~u)(d)). Therefore, r(d1) ∩ S~u(r(d0)) 6= ∅ ⇔ d1 ∩ Sr(~u)(d0) 6= ∅ and

det(~v(r(d1)), ~v(r(d0)), ~u) = det(−r(~v(d1)),−r(~v(d0)), ~u)

= det(r(~v(d1)), r(~v(d0)), r(r(~u))) = − det(~v(d1), ~v(d0), r(~u)).

Therefore, τ ~u(r(d0), r(d1)) = −τ r(~u)(d0, d1) and thus T ~u(r(t)) = −T r(~u)(t). Since
r(~u) = ±~u, Lemma 3.1 implies that T ~u(r(t)) = −T ~u(t), completing the proof.

A natural question at this point concerns how the choice of ~u affects T ~u. It
turns out that it will take us some preparation before we can tackle this question.

Proposition 3.3. If R is a cylinder and t is a tiling of R,

T
~i(t) = T

~j(t) = T
~k(t) ∈ Z.

Proof. Follows directly from Propositions 6.4 and 6.10 below.

This result doesn’t hold in pseudocylinders or in more general simply con-
nected regions; see Section 8 for counterexamples.

Definition 3.4. For a tiling t of a cylinder R, we define the twist Tw(t) as

Tw(t) = T
~i(t) = T

~j(t) = T
~k(t).

Until Section 6, we will not use Proposition 3.3, and will only refer to pretwists.

Let ~u ∈ ∆, and let β = (~β1, ~β2, ~β3) ∈ B be such that ~β3 = ~u. A regionR is said

to be fully balanced with respect to ~u if for each square Q = p+ [0, 2]~β1 + [0, 2]~β2,
where p ∈ Z3 and Q ⊂ R, each of the two sets A~u = R ∩ S̄~u(Q) and A−~u =
R∩ S̄−~u(Q) contains as many black cubes as white ones. In other words,∑

C⊂A~u
color(C) =

∑
C⊂A−~u

color(C) = 0.

R is fully balanced if it is fully balanced with respect to each ~u ∈ ∆.

Lemma 3.5. Every pseudocylinder (in particular, every cylinder) is fully bal-
anced.
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Proof. Let R be a pseudocylinder with base D and depth n, let ~u ∈ ∆ and let
Q = p0 + [0, 2]~β1 + [0, 2]~β2 ⊂ R, where β ∈ B is such that ~β3 = ~u and p0 ∈ Z3.
Consider A±~u = R∩ S̄±~u(Q).

If ~u is the axis of the pseudocylinder, then Q = Q′ + k~u, for some square
Q′ ⊂ D and some 0 ≤ k ≤ n. Now A~u = Q′ + [k, n]~u, which clearly contains
2(n−k) black cubes and 2(n−k) white ones; similarly, A−~u = Q′+[0, k]~u contains
2k black cubes and 2k white ones.

If ~u is perpendicular to the axis of the pseudocylinder, assume without loss
of generality that ~β1 is the axis. Let Π denote the orthogonal projection on D,
and let D± = S̄±~u(Π(Q)) ∩ D, which are planar regions, since they are unions

of squares of D. If p0 − Π(p0) = k~β1, we have A±~u = D± + [k, k + 2]~β1, which
clearly has the same number of black squares as white ones.

Proposition 3.6. Let R be a region that is fully balanced with respect to ~u ∈ Φ.

(i) If a tiling t1 of R is reached from t0 after a flip, then T ~u(t0) = T ~u(t1)

(ii) If a tiling t1 of R is reached from t0 after a single positive trit, then T ~u(t1) =
T ~u(t0) + 1.

Proof. In this proof, ~u points towards the paper in all the drawings. We begin
by proving (i). Suppose a flip takes the dominoes d0 and d̃0 in t0 to d1 and d̃1 in
t1. Notice that ~v(d0) = −~v(d̃0) and ~v(d1) = −~v(d̃1). For each domino d ∈ t0 ∩ t1,
define

E±~u(d) = τ±~u(d, d1) + τ±~u(d, d̃1)− τ±~u(d, d0)− τ±~u(d, d̃0).

Notice that
T ~u(t1)− T ~u(t0) =

∑
d∈t0∩t1

E~u(d) + E−~u(d).

Case 1. Either d0 or d1 is parallel to ~u.

Figure 7: An example of Case 1, where the black arrows represent ~v(d0) and
~v(d̃0). It is clear that the effects of d0 and d̃0 cancel out.

Assume, without loss of generality, that d1 (and thus also d̃1) is parallel to ~u.
By definition, τ±~u(d, d1) = τ±~u(d, d̃1) = 0 for each domino d. Now notice that d0

and d̃0 are parallel and in adjacent floors (see Figure 7) : since ~v(d0) = −~v(d̃0),
it follows that τ±~u(d, d0) + τ±~u(d, d̃1) = 0 for each domino d, so that E±~u(d) = 0
and thus T ~u(t1) = T ~u(t0).

Case 2. Neither d0 nor d1 is parallel to ~u.
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(a) The flip position is highlighted in
yellow in both tilings, and A~u is high-
lighted in green. The vectors ~v(d)
have been drawn for the most relevant
dominoes.

−v(d0)

v(d1)

−v(d̃0)

v(d̃1)

(b) This refers to the tilings in (a),
but only the arrows are drawn (not
the dominoes). Notice that we have
drawn −~v(d0) and −~v(d̃0).

Figure 8: Example of a flip in Case 2, together with a schematic drawing por-
traying ~v(d) for the relevant dominoes.

In this case, d0 ∪ d̃0 = d1 ∪ d̃1 = Q + [0, 1]~u ⊂ R for some square Q of side 2
and normal vector ~u.

Notice that S̄~u(d0) ∪ S̄~u(d̃0) = S̄~u(d1) ∪ S̄~u(d̃1) = S̄~u(Q + ~u); let A~u = R ∩
S̄~u(Q+ ~u).

Let d be a domino that is completely contained in A~u: we claim that τ(d0, d)+
τ(d̃0, d) = 0 = τ(d1, d) + τ(d̃1, d). This is obvious if d is parallel to ~u; if not, we
can switch the roles of t0 and t1 if necessary and assume that d is parallel to d0,
which implies that τ(d0, d) = τ(d̃0, d) = 0. Now notice that d is in the ~u-shades of
both d1 and d̃1, so that τ(d1, d) = −τ(d̃1, d). Hence, if d ⊂ A~u (or if d∩A~u = ∅),
E−~u(d) = 0.

For dominoes d that intersect A~u but are not contained in it, first observe
that by switching the roles of t0 and t1 and switching the colors of the cubes (i.e.,
translating) if necessary, we may assume that the vectors are as shown in Figure
8a. By looking at Figure 8b and working out the possible cases, we see that

E−~u(d) =

{
−1

4
, if ~v(d) points into A~u;

1
4
, if ~v(d) points away from A~u.

Now for such dominoes, ~v(d) points away from the region if and only if d
intersects a white cube of A~u, and points into the region if and only if d intersects
a black cube in A~u: hence,∑

d∈t0∩t1

E−~u(d) =
∑
C⊂A~u

(− color(C)) = 0,
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because R is fully balanced with respect to ~u. A completely symmetrical argu-
ment shows that

∑
d∈t0∩t1 E

~u(d) = 0, so we are done.

We now prove (ii). Suppose t1 is reached from t0 after a single positive trit.
By rotating t0 and t1 in the plane ~u⊥ = {~w|~w · ~u = 0} (notice that this does
not change T ~u), we may assume without loss of generality that the dominoes
involved in the positive trit are as shown in Figure 5. Moreover, by translating
if necessary, we may assume that the vectors ~v(d) are as shown in Figure 9.

A trit involves three dominoes, no two of them parallel. Since dominoes
parallel to ~u have no effect along ~u, we consider only the four dominoes involved
in the trit that are not parallel to ~u: d0, d̃0 ∈ t0, and d1, d̃1 ∈ t1. Define E±~u with
the same formulas as before.

By looking at Figure 5, the reader will see that τ(d0, d̃0) + τ(d̃0, d0) = −1/4
and τ(d1, d̃1) + τ(d̃1, d1) = 1/4.

Let D = d0 ∪ d̃0 ∪ d1 ∪ d̃1: S̄~u(D) is shown in Figure 9. D contains a single
square Q of side 2 and normal vector ~u. Define A~u = S̄~u(D)∩R, and notice that
(see Figure 9) S̄~u(Q) ∩ R = A~u ∪ C1 ∪ C2 ∪ C3, where Ci are three basic cubes:
if we look at the arrows in Figure 9, we see that two of them are white and one
is black. Since R is fully balanced with respect to ~u,∑

C⊂A~u
color(C) =

∑
C⊂S̄~u(Q)∩R

color(C)−
∑

1≤i≤3

color(Ci) = 1.

−v(d0)

v(d1)

−v(d̃0)

v(d̃1)

Figure 9: Illustration of a positive trit position: the portrayed dominoes belong
to t0, and the green cubes represent S~u(D). The vectors −~v(d0), −~v(d̃0), ~v(d1)
and ~v(d̃1) are shown.

By looking at Figure 9, we see that we have a situation that is very similar
to Figure 8b; for each d ∈ t0 ∩ t1, we have

E−~u(d) =


0, if d ⊂ A~u or d ∩ A~u = ∅;
1
4
, if ~v(d) points into A~u;
−1

4
, if ~v(d) points away from A~u

(when we say that ~v(d) points into or away from A~u, we are assuming that d
intersects one cube of A~u). Hence,∑

d∈t0∩t1

E−~u(d) =
1

4

∑
C⊂A~u

color(C) =
1

4
.
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A completely symmetrical argument shows that
∑

d∈t0∩t1 E
~u(d) = 1/4, and

hence

T ~u(t1)− T ~u(t0) = (τ(d1, d̃1) + τ(d̃1, d1))− (τ(d0, d̃0) + τ(d̃0, d0))

+
∑

d∈t0∩t1

E−~u(d) +
∑

d∈t0∩t1

E~u(d) =
1

4
+

1

4
+

1

4
+

1

4
= 1,

which completes the proof.

4 Topological groundwork for the twist

In this section, we develop a topological interpretation of tilings and twists. Domi-
noes are (temporarily) replaced by dimers, which, although formally different ob-
jects, are really just a different way of looking at dominoes. Although we will tend
to work with dimers in this and the following section, we may in later sections
switch back and forth between these two viewpoints.

LetR be a region. A segment ` ofR is a straight line of unit length connecting
the centers of two cubes of R; in other words, ` : [0, 1] → R3 with `(s) =
p0 + (p1 − p0)s, where p0 and p1 are the centers of two cubes that share a face:
this segment is a dimer if p0 = `(0) is the center of a white cube. We define
~v(`) = `(1)− `(0) (compare this with the definition of ~v(d) for a domino d). If `
is a segment, (−`) denotes the segment s 7→ `(1− s): notice that either ` or −`
is a dimer.

Two segments `0 and `1 are adjacent if `0 ∩ `1 6= ∅ (here we make the usual
abuse of notation of identifying a curve with its image in R3); nonadjacent seg-
ments are disjoint. In particular, a segment is always adjacent to itself.

A tiling of R by dimers is a set of pairwise disjoint dimers such that the center
of each cube of R belongs to exactly one dimer of t. If t is a tiling, (−t) denotes
the set of segments {−`|` ∈ t}.

Given a map γ : [m,n] → R3, a segment ` and an integer k ∈ [m,n − 1], we
abuse notation by making the identification γ|[k,k+1] = ` if γ(s) = `(s − k) for
each s ∈ [k, k + 1]. A curve of R is a map γ : [0, n] → R3 such that γ|[k,k+1] is
(identified with) a segment of R for k = 0, 1, . . . , n − 1. We make yet another
abuse of notation by also thinking of γ as a sequence or set of segments of R,
and we shall write ` ∈ γ to denote that ` = γ|[k,k+1] for some k.

A curve γ : [0, n]→ R3 ofR is closed if γ(0) = γ(n); it is simple if γ is injective
in [0, n). A closed curve γ : [0, 2]→ R3 of R is called trivial : notice that, in this
case, γ|[0,1] = −(γ|[1,2]) (when identified with their respective segments of R). A
discrete rotation on [0, n] is a function ρ : [0, n]→ [0, n] with ρ(s) = (s+k) mod n,
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for a fixed k ∈ Z. If γ0 : [0, n] → R3 and γ1 : [0,m] → R3 are two closed curves,
we say γ0 = γ1 if n = m and γ1 = γ0 ◦ ρ for some discrete rotation ρ on [0, n].

Given two tilings t0 and t1, there exists a unique (up to discrete rotations)
finite set of disjoint closed curves Γ(t0, t1) = {γi|1 ≤ i ≤ m} such that t0∪(−t1) =
{`|` ∈ γi for some i} and such that every nontrivial γi is simple. Figure 12 shows
an example. We define Γ∗(t0, t1) := {γ ∈ Γ(t0, t1)|γ nontrivial }.

Translating effects from the world of dominoes to the world of dimers is rel-
atively straightforward. For ~u ∈ Φ, Π~u will denote the orthogonal projection on
the plane π~u = ~u⊥ = {~w ∈ R3|~w · ~u = 0}. Given two segments `0 and `1, we set:

τ ~u(`0, `1) =

{
1
4

det(~v(`1), ~v(`0), ~u), Π~u(`0) ∩ Π~u(`1) 6= ∅, `0(0) · ~u < `1(0) · ~u;

0, otherwise.

Notice that this definition is analogous to the one given in Section 3 for dominoes.

The definition of τ ~u is given in terms of the orthogonal projection Π~u. From a
topological viewpoint, however, this projection is not ideal, because it gives rise
to nontransversal intersections between projections of segments. In order to solve
this problem, we consider small perturbations of these projections.

Recall that B is the set of positively oriented basis β = (~β1, ~β2, ~β3) with
vectors in Φ. If β ∈ B and a, b ∈ R, Πβ

a,b will be used to denote the projection

on the plane π
~β3 = ~β⊥3 = {~u ∈ R3|~u · ~β3 = 0} whose kernel is the subspace

(line) generated by the vector ~β3 + a~β1 + b~β2. For instance, if β = (~i,~j, ~k) is the

canonical basis, Πβ
a,b(x, y, z) = (x − az, y − bz, 0). Notice that Πβ

0,0 = Π
~β3 is the

orthogonal projection on the plane π
~β3 , and, for small (a, b) 6= (0, 0), Πβ

a,b is a

nonorthogonal projection on π
~β3 which is a slight perturbation of Π

~β3 .

Given β ∈ B, ~u = ~β3 and small nonzero a, b ∈ R, set the slanted effect

τβa,b(`0, `1) =

{
det(~v(`1), ~v(`0), ~u), Πβ

a,b(`0) ∩ Πβ
a,b(`1) 6= ∅, ~u · `0(0) < ~u · `1(0);

0, otherwise.

Recall from knot theory the concept of crossing (see, e.g., [1, p.18]). Namely,
if γ0 : I0 → R3, γ1 : I1 → R3 are two continuous curves, sj ∈ int(Ij) and Π is a
projection from R3 to a plane, then (Π, γ0, s0, γ1, s1) is a crossing if γ0(s0) 6= γ1(s1)
but Π(γ0(s0)) = Π(γ1(s1)). If, furthermore, γj is of class C1 in sj and the vectors
γ′1(s1), γ′0(s0) and γ1(s1) − γ0(s0) are linearly independent, then the crossing is
transversal ; its sign is the sign of det(γ′1(s1), γ′0(s0), γ1(s1) − γ0(s0)). We are
particularly interested in the case where the curves are segments of a region R.

For a region R and ~u ∈ Φ, we define the ~u-length of R as

N = max
p0,p1∈R

|~u · (p0 − p1)|.
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Lemma 4.1. Let R be a region, and fix β ∈ B. Let N be the ~β3-length of R, and
let a, b ∈ R with 0 < |a|, |b| < 1/N . Then τβa,b(`0, `1)+τβa,b(`1, `0) 6= 0 if and only if

there exist s0, s1 ∈ [0, 1] such that `0(s0) 6= `1(s1) but Πβ
a,b(`0(s0)) = Πβ

a,b(`1(s1)).

Moreover, if the latter condition holds for s0, s1, then (Πβ
a,b, `0, s0, `1, s1) is a

transversal crossing whose sign is given by τβa,b(`0, `1) + τβa,b(`1, `0).

Proof. Suppose τβa,b(`0, `1) + τβa,b(`1, `0) 6= 0. We may without loss of generality

assume τβa,b(`0, `1) 6= 0. By definition, we have Πβ
a,b(`0(s0)) = Πβ

a,b(`1(s1)) for some

s0, s1 ∈ [0, 1] and ~β3 · `0(0) < ~β3 · `1(0). Since det(~v(`1), ~v(`0), ~β3) 6= 0, we have

~β3 · `0(s0) = ~β3 · (`0(0) + s0~v(`0)) = ~β3 · `0(0) < ~β3 · `1(0) = ~β3 · `1(s1),

and thus `0(s0) 6= `1(s1).

Conversely, suppose `0(s0) 6= `1(s1) but Πβ
a,b(`0(s0)) = Πβ

a,b(`1(s1)): this can
be rephrased as

`1(s1)− `0(s0) = c(~β3 + a~β1 + b~β2) (1)

for some c 6= 0. Notice that c = ~β3 · (`1(s1)− `0(s0)), so that |c| ≤ N .

We now observe that det(~v(`1), ~v(`0), ~β3) 6= 0. Suppose, by contradiction,

that det(~v(`1), ~v(`0), ~β3) = 0. Then, at least one of the following statements must

be true: ~β1 · ~v(`0) = ~β1 · ~v(`1) = 0; or ~β2 · ~v(`0) = ~β2 · ~v(`1) = 0. Assume

that the first statement holds (i.e., ~β1 · ~v(`i) = 0). By definition of segment,

`i(si) = `i(0) + si~v(`i). By taking the inner product with ~β1 on both sides of (1),

ac = ~β1 · (`1(s1)− `0(s0)) = ~β1 · (`1(0)− `0(0)). Now `0(0), `1(0) ∈ (Z])3, so that

ac = ~β1 · (`1(0)− `0(0)) ∈ Z. Since |a| < 1/N , |ac| < 1 and thus c = 0, which is
a contradiction.

Finally, since ~β3·~v(`0) = ~β3·~v(`1) = 0, we have ~β3·(`1(0)−`0(0)) = ~β3·(`1(s0)−
`0(s1)) = c 6= 0. From the definition of τβa,b, we see that τβa,b(`0, `1)+τβa,b(`1, `0) 6= 0.

To see the last claim, we first note that si ∈ (0, 1): since ~v(`i) ∈ {±~β1,±~β2},
we may take the inner product with ~v(`i) on both sides of (1) to get that si
equals either |ac| or |bc|, and hence si ∈ (0, 1). Since ~v(`0) ⊥ ~v(`1), this proves

that (Πβ
a,b, `0, s0, `1, s1) is a transversal crossing. If ~w = ~β3 +a~β1 + b~β2, the sign of

this crossing is given by the sign of det(~v(`1), ~v(`0), c~w). By switching the roles
of `0 and `1 if necessary, we may assume that c > 0, so that this sign equals
det(~v(`1), ~v(`0), ~w) = det(~v(`1), ~v(`0), ~β3) = τa,b(`0, `1), completing the proof.

Lemma 4.2. Let R be a region, and let β ∈ B. Let N denote the ~β3-length of
R, and suppose 0 < ε < 1/N . Given two segments `0 and `1,

τ
~β3(`0, `1) =

1

4

∑
i,j∈{−1,1}

τβiε,jε(`0, `1).
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Proof. We may assume that ~β3 ·`0(0) < ~β3 ·`1(0) and that det(~v(`1), ~v(`0), ~β3) 6= 0

(otherwise both sides would be zero). Since rotations in the ~β⊥3 plane leave both

sides unchanged, we may assume that ~v(`1) = ±~β1, ~v(`0) = ±~β2 (see Figure 10).

Figure 10: Illustrations of the four different projections Πβ
±ε,±ε of two segments

`0, `1 with τ
~β3(`0, `1) = 1/4. The dotted lines represent the projection of lines

which are parallel to ~β3, in each of the four cases. Notice that the segments
are involved in a crossing for exactly one of the projections, and this crossing is
positive.

Our strategy is to show these two facts:

(i) If τβiε,jε(`0, `1) 6= 0 for some (i, j) ∈ {−1, 1}2, then τ
~β3(`0, `1) 6= 0.

(ii) If τ
~β3(`0, `1) 6= 0, then there exists a unique (i, j) ∈ {−1, 1}2 such that

τβiε,jε(`0, `1) 6= 0.

Once we prove (i) and (ii), we get the result.

Let c = ~β3 · (`1(0)− `0(0)), and consider the closed sets

Aij =
{
δ ∈ [0, ε]|∃s0, s1 ∈ [0, 1], `1(s1)− `0(s0) = c(~β3 + iδ~β1 + jδ~β2)

}
.

Notice that ε ∈ Aij if and only if τβiε,jε(`0, `1) 6= 0, and 0 ∈ Aij if and only if

τ
~β3(`0, `1) 6= 0.

Suppose ε ∈ Aij for some (i, j) ∈ {−1, 1}2, and let δ = minAij. If δ > 0,

`1(s1)− `0(s0) = c(~β3 + iδ~β1 + jδ~β2) implies, by Lemma 4.1, that s0, s1 ∈ (0, 1).
Hence, there must exist δ′ < δ such that δ′ ∈ A, a contradiction. Therefore, we
must have δ = 0, so that 0 ∈ Aij. We have proved (i).

Now suppose τ
~β3(`0, `1) 6= 0, that is, `1(k1) − `0(k0) = c~β3 for some k0, k1 ∈

[0, 1]. Clearly k0, k1 ∈ {0, 1}; for simplicity, assume that k0 = k1 = 0 (the other

cases are analogous). Now for any s0, s1 ∈ [0, 1], `1(s1)− `0(s0) = c~β3− s0~v(`0) +
s1~v(`1). Thus, given (i, j) ∈ {−1, 1}2,

ε ∈ Aij ⇔ ∃s0, s1 ∈ [0, 1] : s1(~v(`1) · ~β1) = iεc, −s0(~v(`0) · ~β2) = jεc,

which occurs if and only if iεc(~v(`1) · ~β1) > 0 and jεc(~v(`0) · ~β2) < 0: this
determines a unique (i, j) ∈ {−1, 1}2, so we have proved (ii).
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If A0 and A1 are two sets of segments (curves are also seen as sets of segments),
~u ∈ Φ, β ∈ B, define

T ~u(A0, A1) =
∑
`0∈A0
`1∈A1

τ ~u(`0, `1), T βa,b(A0, A1) =
∑
`0∈A0
`1∈A1

τβa,b(`0, `1).

For shortness, T ~u(A) = T ~u(A,A) and T βa,b(A) = T βa,b(A,A).

Consider two disjoint simple closed curves γ0, γ1 and a projection Π from R3

to some plane. Assume there exists finitely many crossings (Π, γ0, s0, γ1, s1), all
transversal. Recall from knot theory (see, e.g., [1, pp. 18–19]) that the linking
number Link(γ0, γ1) equals half the sum of the signs of all these crossings.

Lemma 4.3. Let γ0 and γ1 be two disjoint simple closed curves of a region R.
Fix β ∈ B, and let N denote the ~β3-length of R. Then

(i) If 0 < |a|, |b| < 1/N , T
~β
a,b(γ0, γ1) + T

~β
a,b(γ1, γ0) = 2 Link(γ0, γ1).

(ii) T
~β3(γ0, γ1) + T

~β3(γ1, γ0) = 2 Link(γ0, γ1).

Proof. By Lemma 4.1, the sum of signs of the crossings is given by T βa,b(γ0, γ1) +

T βa,b(γ1, γ0), which establishes (i). Also, (ii) follows from (i) and Lemma 4.2.

Lemma 4.4. Let `0 and `1 be two segments of R, and let ~u ∈ R3 be a vector
such that ‖~u‖ < 1. Then these two statements are equivalent:

(i) There exist s0, s1 ∈ [0, 1] such that `0(s0)− `1(s1) = ~u.

(ii) There exist (i, j) ∈ {0, 1}2 and a0, a1 ∈ (−1, 1) such that `0(i) = `1(j) and
~u = a0~v(`0) + a1~v(`1) with (−1)ia0 ≥ 0 and (−1)ja1 ≤ 0.

Proof. First, suppose (i) holds. If `0 and `1 are not adjacent, then dist(`0, `1) ≥
1 > ‖~u‖, which is a contradiction. Thus, `0 and `1 are adjacent, and thus
`0(i) = `1(j) for some (i, j) ∈ {0, 1}2: then

~u = `0(s0)− `1(s1) = [`0(i) + (s0 − i)~v(`0)]− [`1(j) + (s1 − j)~v(`1)]

= (s0 − i)~v(`0) + (j − s1)~v(`1),

that is, ~u = a0~v(`0) + a1~v(`1) with (i + a0), (j − a1) ∈ [0, 1], which implies that
(−1)ia0 ≥ 0 and (−1)ja1 ≤ 0. Also, since ‖~u‖ < 1, we can take a0, a1 ∈ (−1, 1).

For the other direction, suppose (ii) holds, so that `0(i) = `1(j) for some
(i, j) ∈ {0, 1}2. Then setting s0 = (i+a0) and s1 = (j−a1), we have s0, s1 ∈ [0, 1]
and `0(i+ a0)− `1(j − a1) = [`0(i) + a0~v(`0)]− [`1(j)− a1~v(`1)] = ~u.

For a map γ : [0, n]→ R3 and a vector ~u ∈ R3, let (γ + ~u) : [0, 1]→ R3 : s 7→
γ(s) + ~u denote the translation of γ by ~u.
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Lemma 4.5. Let γ be a curve of R, let β ∈ B, and let ~u = a~β1 + b~β2 + c~β3 ∈ R3.
If ‖~u‖ < 1 and abc 6= 0, then the curves γ and γ + ~u are disjoint.

Notice that γ + ~u is not a curve of R.

Proof. Suppose, by contradiction, that there exist s0, s1 ∈ [0, n] (the domain of γ)
such that γ(s0) = γ(s1) +~u. Let k0, k1 ∈ Z be such that ki ≤ si ≤ ki+ 1 ≤ n, and
set s̃i = si−ki. Since γ is a curve of R, `i = γ|[ki,ki+1] are segments of R such that
`0(s̃0)− `1(s̃1) = γ(s0)− γ(s1) = ~u. By Lemma 4.4, ~u = a0~v(`0) + a1~v(`1), which
means that at least one of the three coordinates of ~u is zero: this contradicts the
fact that abc 6= 0.

Consider a simple closed curve γ : I → R3 and a vector ~u ∈ R3, ~u 6= 0.
Assume that there exists δ > 0 such that for each s ∈ (0, δ], the curves γ and
γ+s~u are disjoint. Then define the directional writhing number in the direction ~u
by Wr(γ, ~u) = Link(γ, γ+δ~u) (see [9, §3]). Since Link is symmetric and invariant
by translations, Wr(γ, ~u) = Wr(γ,−~u).

Lemma 4.6. Fix β ∈ B, and let γ be a simple closed curve of R. If 0 < |a|, |b| <
1/N , where N is the ~β3-length of R, then Wr(γ, ~β3 + a~β1 + b~β2) = T βa,b(γ).

Proof. We would like to use the fact that the sums of the signs of the crossings
of the orthogonal projection of a smooth curve in the direction of a vector ~u
equals its directional writhing number (in the direction of ~u): this is essentially
what we’re trying to prove for our curve, except that Πβ

a,b is not the orthogonal
projection and that γ is not a smooth curve. However, these difficulties can be
avoided, as the following paragraphs show.

The orthogonality of the projection makes no real difference, because the
orthogonal projection in the direction of (a, b, 1) has the same kernel as Πβ

a,b,
so the crossings occur in the same positions (and clearly have the same signs).
Therefore, by Lemma 4.1, T βa,b(γ) equals the sums of the signs of the crossings of
the aforementioned orthogonal projection.

For the smoothness of the curve, there is a finite number of points where γ
is not smooth: precisely, the set of k ∈ Z such that the two segments of γ that
intersect at γ(k) are not parallel. To simplify notation, let [0, n] be the domain
of γ, and for k = 0, 1, . . . , n− 1 let `k be the segment of γ such that `k(0) = γ(k)
(notice that `k(1) = γ(k + 1)). It is also convenient to set `−1 := `n−1, so that
`−1(1) = `n−1(1) = γ(n) = γ(0).

Recall from Lemma 4.1 that every crossing in the projections occur in the
interiors of the segments: since the number of segments is finite, we can pick
0 < ε < 1/2 sufficiently small so that Πβ

a,b(γ(Uε)) contains no crossings, where

Uε = [0, n] ∩
(⋃

k∈Z[k − ε, k + ε]
)
.
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Let φ1 : R→ R be a nondecreasing C∞ function such that φ1(t) = 0 whenever
t ≤ −ε and φ1(t) = t whenever t ≥ ε. Let φ0(t) = t + ε − φ1(t). Consider the
smooth simple closed curve of R3, γ̃ : [0, n]→ R3, given by

γ̃(s) =

{
γ(k − ε) + φ0(s− k)~v(`k−1) + φ1(s− k)~v(`k), s ∈ (k − ε, k + ε);

γ(s), s /∈ Uε.

To simplify notation, write ~w = ~β3 + a~β1 + b~β2 and fix δ < 1/
√

1 + a2 + b2, so
that ‖δ ~w‖ < 1. By Lemma 4.5, γ and γ + s~u are disjoint whenever s ∈ (0, δ].

Clearly, the sums of the signs of the crossings in the orthogonal projection of γ̃
equals that of γ; moreover, Link(γ̃, γ̃+s~w) = Link(γ, γ+s~w) for sufficiently small
s > 0. Since γ̃ is smooth, T βa,b(γ) = Wr(γ̃, ~w) = Link(γ, γ + s~w) = Wr(γ, ~w).

The following rather technical Lemma will be used in the proof of Lemma 4.8:

Lemma 4.7. Let β ∈ B, and let `0 and `1 be two segments of a region R
whose ~β3-length is N . Let ~u = b~β2 + c~β3 with bc 6= 0 and b2 + c2 < 1. Let

0 < ε < min
(
|b|

N+|c| ,
1−|b|
N+|c|

)
.

If, for some s0, s1 ∈ [0, 1], Πβ
ε,ε(`0(s0)− `1(s1)−~u) = 0, then `0 and `1 are not

parallel, and s0, s1 ∈ (0, 1).

Proof. Suppose Πβ
ε,ε(`0(s0) − `1(s1) − ~u) = 0. Let αi = ~βi · (`0(s0) − `1(s1)), i =

1, 2, 3, so that α1 = ε(α3 − c), α2 − b = ε(α3 − c).

Suppose, by contradiction, that at least one of these things occurs:

(i) `0 and `1 are parallel;

(ii) s0 ∈ {0, 1} or s1 ∈ {0, 1}.

We claim that at least two of the three αi’s are integers. To see this, suppose
first (i), so that ~v(`0), ~v(`1) ‖ ~βi, so that for j 6= i, αj = ~βj · (`0(s0)− `1(s1)) ∈ Z.

On the other hand, if (ii) holds, say s1 ∈ {0, 1}, then `1(s1) ∈ Z] and ~v(`0) ‖ ~βi,
so that, again, for j 6= i, αj ∈ Z.

We claim that α2 /∈ Z. In fact, if α2 ∈ Z then we would have |α2| = |b+ε(α3−
c)| < |b|+ 1−|b|

N+|c|(N + |c|) = 1, so that α2 = 0 and |b| = ε|α3− c| < |b|
N+|c|(N + |c|),

which is a contradiction.

Therefore, we must have α1, α3 ∈ Z. Then |α1| = |ε(α3 − c)| < |b| < 1, so
α1 = 0 = α3 − c. Thus c = α3 ∈ Z but |c| ∈ (0, 1), which is a contradiction.
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The following definition is specific for Lemmas 4.8 and 5.4. Let γ : [0, n]→ R3

be a simple closed curve of a region R and β ∈ B. For k = 0, 1, . . . , n − 1, set
`k = γ|[k,k+1], and set also `n = `0. Finally, we define

ηβγ (k) =


1, (~v(`k), ~v(`k+1)) = (~β2, ~β3) or (−~β3,−~β2);

−1, (~v(`k), ~v(`k+1)) = (−~β2,−~β3) or (~β3, ~β2);

0, otherwise.

Lemma 4.8. Let γ : [0, n] → R3 be a simple closed curve of a region R. For
k = 0, 1, . . . , n − 1, set `k = γ|[k,k+1], and set also `n = `0; for shortness, write
~vk = ~v(`k). Then if β ∈ B and a, b, c > 0, then

Wr(γ, a~β1 + b~β2 + c~β3)−Wr(γ,−a~β1 + b~β2 + c~β3) =
∑

0≤k<n

ηβγ (k).

Proof. We may assume that a2 + b2 + c2 < 1. Let 0 < ε < min
(
|b|

N+|c| ,
1−|b|
N+|c|

)
,

and set ~u(s) = s~β1 + b~β2 + c~β3. By Lemma 4.5, Link(γ, γ + ~u(a)) depends
only on the signs of a, b and c. Therefore, we may, without loss of generality,
assume that a > 0 is sufficiently small such that for every s ∈ [−a, a] and every
i, j ∈ {0, 1, . . . , n},

Πβ
ε,ε(`i) ∩ Πβ

ε,ε(`j + ~u(s)) 6= ∅ ⇔ Πβ
ε,ε(`i) ∩ Πβ

ε,ε(`j + ~u(0)) 6= ∅

(this is possible by Lemma 4.7). Therefore, clearly Link(γ, γ+~u(a))−Link(γ, γ+
~u(−a)) equals the number of pairs of segments `i, `j such that Πβ

ε,ε(`i)∩Πβ
ε,ε(`j +

~u(s)) 6= ∅ for every s ∈ [−a, a] and such that the crossing changes its sign as s
goes from −a to a. Now a crossing may only change its sign if `i∩ (`j +~u(s)) 6= ∅
for some s: by Lemma 4.5, this can only happen if s = 0.

By Lemma 4.4, `i ∩ (`j + ~u(0)) 6= ∅ if and only if for some mi,mj ∈ {0, 1},
`i(mi) = `j(mj) and ~u(0) = b~β2 + c~β3 = ai~v(`i) + aj~v(`j), with (−1)miai ≥
0, (−1)mjaj ≤ 0. Since `i and `j are segments of the simple curve γ, they can
only be adjacent if, for some k, {`i, `j} = {`k, `k+1}. Now, `k+1(0) = `k(1), so
that (0, b, c) = a0~v(`k+1)− a1~v(`k) with either a0, a1 ≥ 0 or a0, a1 ≤ 0 (depending
on which is `i and which is `j). Since b, c > 0, this implies that {~v(`k), ~v(`k+1)} =

{~β2, ~β3} or {−~β2,−~β3} and, therefore, ηβγ (k) = ±1.

We now analyze each of the four possible cases for (~v(`k), ~v(`k+1)) (as an

ordered pair). When (~v(`k), ~v(`k+1)) = (~β2, ~β3) or (−~β3,−~β2), so that ηβγ (k) = 1,
we see a situation as illustrated in Figure 11a (perhaps with both orientations
reversed): when s > 0, we have a positive crossing; when s < 0, we have a negative
crossing. Figure 11b illustrates (up to orientation) the case (~v(`k), ~v(`k+1)) =

(−~β2,−~β3) or (~β3, ~β2) (ηβγ (k) = −1): negative crossing for s > 0, and positive
crossing for s < 0. These observations yield the result.
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s > 0 s < 0

~β1

~β2

~β3

(a) ηβγ (k) = 1.

s > 0 s < 0

~β1

~β2

~β3

(b) ηβγ (k) = −1.

Figure 11: Illustration of the crossings Πβ
ε,ε(γ)∩Πβ

ε,ε(γ + s~β1 + b~β2 + c~β3) for s ∈
[−a, a]. Notice that simultaneously switching the orientations of both segments
does not change the signs of the crossings.

5 Writhe formula for the twist

Now that the groundwork is done, we set out to obtain a new formula for the
twist of pseudocylinders of even depth (we work with pseudocylinders because
the hypothesis of simple connectivity will not play any role). Pseudocylinders of
even depth have the advantage of always admitting a tiling such that all dimers
are parallel to its axis: for a ~w-pseudocylinder R (~w ∈ ∆) with even depth, let
t~w = t~w(R) denote the tiling such that every dimer is parallel to ~w (see Figure 12).
Not only does this tiling trivially satisfy T ~w(t~w) = 0, but also for any segment `
of R and any dimer `0 ∈ t~w we have τ ~w(`0, `) = τ ~w(`, `0) = 0. This allows for a
direct interpretation of the twist via a set of curves, which, in particular, allows
us to show that it is an integer.

Lemma 5.1. Given ~w ∈ ∆, let t be a tiling of a ~w-pseudocylinder of even depth
R, and let t~w = t~w(R). If Γ∗(t, t~w) = {γi | 1 ≤ i ≤ m}, then

T ~w(t) =
∑

1≤i≤m

T ~w(γi) + 2
∑

1≤i<j≤m

Link(γi, γj).

Proof. Clearly,

T ~w(t) = T ~w(t t (−t~w)) =
∑
i,j

T ~w(γi, γj) =
∑
i

T ~w(γi) + 2
∑
i<j

Link(γi, γj),

the last equality holding by Lemma 4.3.

For Lemmas 5.2 and 5.3, assume ~w ∈ ∆, t is a tiling of a ~w-pseudocylinder
with even depth R, and t~w = t~w(R).



22 Domino tilings of three-dimensional regions — October 27, 2015

(a) The tiling t.

~β1

~β2

~β3

(b) The curves in Γ(t, t~w).

Figure 12: A tiling t of a ~w-cylinder with depth 4, and Γ(t, t~w), where t~w is
the tiling such that every dimer is parallel to ~w. The dimers of t are the red
segments, and the blue segments are the ones in (−t~w). We chose a basis β ∈ B

with ~w = ~β3; ~w points “towards the paper”. Γ(t, t~w) consists of nine curves, four
of which are trivial; the five nontrivial curves form Γ∗(t, t~w).

Lemma 5.2. Fix β ∈ B such that ~β3 = ~w. If γ is a curve of Γ∗(t, t~w) and

a2 + b2 + c2 < 1 and ab 6= 0, then (γ + a~β1 + b~β2 + c~β3) ∩ γ = ∅.

Notice that the case c 6= 0 follows from Lemma 4.5.

Proof. Let ~u = a~β1 + b~β2 + c~β3. Suppose, by contradiction, that γ and γ + ~u are
not disjoint, and let `0 and `1 be two segments of γ such that `0(s0) = `1(s1) + ~u
for some s0, s1 ∈ [0, 1]. By Lemma 4.4, `0 and `1 must be adjacent, so that
at least one of these two segments is in (−t~w), hence parallel to ~u. Lemma 4.4

also implies that ~u = a~β1 + b~β2 + c~β3 = a0~v(`0) + a1~v(`1). Since at least one of

~v(`0), ~v(`1) is parallel to ~w = ~β3, it follows that a = 0 or b = 0, which contradicts
the hypothesis.

By Lemma 5.2, if γ ∈ Γ∗(t, t~w), Wr(γ, a~β1 + b~β2 + c~β3) is defined whenever
ab 6= 0. Set

Wr+(γ) = Wr(γ, ~β1 + ~β2), Wr−(γ) = Wr(γ, ~β1 − ~β2).
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Clearly,

Wr(γ, a~β1 + b~β2 + c~β3) =

{
Wr+(γ), ab > 0;

Wr−(γ), ab < 0.
(2)

Lemma 5.3. If γ is a curve of Γ∗(t, t~w), then

T ~w(γ) =
Wr+(γ) + Wr−(γ)

2
.

Proof. Fix β ∈ B with ~β3 = ~w, and let N denote the ~w-length of the pseudocylin-
der (which is equal to its depth). By Lemmas 4.2 and 4.6, given 0 < ε < 1/N,

T ~w(γ) =
1

4

∑
i,j∈{−1,1}

T βiε,jε(γ) =
1

4

∑
i,j∈{−1,1}

Wr(γ, iε~β1 + jε~β2 + ~β3);

Equation (2) completes the proof.

Lemma 5.4. Let ~w ∈ ∆, and let t be a tiling of a ~w-pseudocylinder with even
depth. If γ is a curve of Γ∗(t, t~w), then (Wr+(γ) + Wr−(γ))/2 ∈ Z.

Proof. Pick β ∈ B with ~β3 = ~w. Assume without loss of generality that R =
D+ [0, 2N ]~β3, D ⊂ ~β⊥3 . If γ : [0, n]→ R3, set `k = γ|[k,k+1] for k = 0, 1, . . . , n− 1,
and set `n = `0.

By definition and using Lemma 4.8, Wr+(γ)−Wr−(γ) =
∑

k η
β
γ (k). We need

to look at k such that ηβγ (k) 6= 0, i.e., {~v(`k), ~v(`k+1)} = {~β2, ~β3} or {−~β2,−~β3}.
Since every segment of −t~w is parallel to ~β3, we need to look at every segment of
t that is parallel to ~β2.

For each segment `k of t with ~v(`k) = ±~β2, let zk
] = ~β3 · `k(0), so that zk ∈ Z.

If zk is odd, then, by definition of t~w, ~v(`k−1) = ~β3 = −~v(`k+1), so that either

(~v(`k−1), ~v(`k)) = (~β3, ~β2) or (~v(`k), ~v(`k+1)) = (−~β2,−~β3). Making a similar
analysis for zk even, we see that ηβγ (k − 1) + ηβγ (k) = (−1)zk . Working with
congruence modulo 2,

Wr+(γ) + Wr−(γ) ≡Wr+(γ)−Wr−(γ) =
∑

~v(`k)=±~β2

(−1)zk ≡
∑
k

(~v(`k) · ~β2) = 0,

which completes the proof.

Proposition 5.5. If ~w ∈ ∆, R is a ~w-pseudocylinder with even depth, t is a
tiling of R, t~w = t~w(R) and Γ∗(t, t~w) = {γi | 1 ≤ i ≤ m}, then

T ~w(t) =
∑

1≤i≤m

Wr+(γi) + Wr−(γi)

2
+ 2

∑
1≤i<j≤m

Link(γi, γj) ∈ Z.

Proof. Follows directly from Lemmas 5.1, 5.3 and 5.4.
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6 Different directions of projection

Our goal for this Section is to prove Proposition 3.3, that is, that all pretwists
coincide for a cylinder.

Lemma 6.1. Let ~w ∈ ∆, and let R be a ~w-pseudocylinder with even depth. Let
t be a tiling of R, and let t~w be the tiling such that every dimer is parallel to ~w.
If ~u ∈ Φ, then T ~u(t t (−t~w)) = T ~w(t).

Proof. Suppose Γ∗(t, t~w) = {γi | 1 ≤ i ≤ m}. Clearly,

T ~u(t t (−t~w)) =
∑
i,j

T ~u(γi, γj) =
∑
i

T ~u(γi) + 2
∑
i<j

Link(γi, γj).

Let L be the ~u-length of R and 0 < ε < 1/L. Let β ∈ B such that ~β3 = ~u. Then,
by Lemmas 4.2 and 4.6,

T ~u(γi) =
1

4

∑
k,l∈{−1,1}

T βkε,lε(γi) =
1

4

∑
k,l∈{−1,1}

Wr(γi, kε~β1 + lε~β2 + ~β3).

By Equation (2) and Proposition 5.5,

T ~u(t t (−t~w)) =
∑
i

Wr+(γi) + Wr−(γi)

2
+ 2

∑
i<j

Link(γi, γj) = T ~w(t).

Lemma 6.2. Let B = [0, L]× [0,M ]× [0, N ] be a box that has at least one even

dimension, and let t be a tiling of B. Then T
~i(t) = T

~j(t) = T
~k(t).

Proof. By rotating, we may assume that N is even, so that B is a ~k-cylinder with

even depth; let ~u ∈ Φ, ~u ⊥ ~k. We want to show that T ~u(t) = T
~k(t).

By Lemma 6.1, T
~k(t) = T ~u(t t (−t~k)). Now,

T ~u(t t (−t~k)) = T ~u(t) + T ~u(−t~k) + T ~u(t,−t~k) + T ~u(−t~k, t).

T ~u(−t~k) = 0 because all segments of (−t~k) are parallel. It remains to show that
T ~u(t,−t~k) = T ~u(−t~k, t) = 0, which yields the result.

Let ~w = ~u × ~k. Given `0 ∈ t, we now want to show that
∑

`∈t~k
τ ~u(`, `0) =∑

`∈t~k
τ ~u(`0, `) = 0. This is obvious if `0 is not parallel to ~w. Otherwise, effects

cancel out, as illustrated in Figure 13.
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Figure 13: A dimer `0 parallel to ~w, portrayed in red, and the pairs of segments
(blue) of t~k affected by it: ~u-effects cancel.

If Q ⊂ π is a basic square and ~w ∈ ∆ is a normal vector for π, define the
color of Q to be the same as the color of the basic cube Q− [0, 1]~w; and

color(Q) =

{
1, if Q is black;

−1, if Q is white.

Recall the definition of ~u-shade from Section 3. If A is a set of segments or a
set of dominoes, ~u ∈ Φ and Q is a basic square with normal ~w ∈ ∆, we set

S(A, ~u,Q, n) = {` ∈ A | ` ∩ S~u(Q+ [0, n]~w) 6= ∅}.

Lemma 6.3. Let R be a ~w-cylinder (~w ∈ ∆) with base D ⊂ π and even depth
N . Let Q ⊂ π be a basic square, Q 6⊂ D, let t be a tiling of R and let ~u ∈ Φ.
Then ∑

d∈S(t,~u,Q,N)

det(~v(d), ~w, ~u) = 0.

Proof. The reader may want to follow by looking at Figure 14. Let t~w = t~w(R),
St = S(t, ~u,Q,N), and for each γ ∈ Γ∗(t, t~w), let Sγ denote S(γ, ~u,Q,N). Clearly,∑

d∈St

det(~v(d), ~w, ~u) =
∑

γ∈Γ∗(t,t~w)
`∈Sγ

det(~v(`), ~w, ~u)).

Let pQ be the center of the square Q, and let Π denote the orthogonal projection
on π. For each γ ∈ Γ∗(t, t~w), Π ◦ γ is a polygonal curve, so that the winding
number of γ around pQ equals (see, e.g., [2] for an algorithmic discussion of
winding numbers)

wind(Π ◦ γ, pQ) =
1

2
(#{` ∈ Sγ |~v(`) = ~w × ~u} −#{` ∈ Sγ |~v(`) = −~w × ~u})

=
1

2

∑
`∈Sγ

det(~v(`), ~w, ~u).

But wind(Π ◦ γ, pQ) = 0 (pQ /∈ D and D is simply connected), so we get the
result.
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Q

R

S~u

Figure 14: A cylinder R with base D ⊂ π and depth N , a basic square Q ⊂ π,
Q 6⊂ D and the shade S~u(Q+ [0, N ]~w).

Proposition 6.4. Let N ∈ N be even, and suppose R is a cylinder with depth

N . If t is a tiling of R, then T
~i(t) = T

~j(t) = T
~k(t) ∈ Z.

Proof. Suppose R = D + [0, N ]~w, where D ⊂ π is simply connected and ~w ∈ ∆
is the axis of the cylinder. Let A ⊂ π be a rectangle with vertices in Z3 such that
D ⊂ A: this implies that the box B = A + [0, N ]~w ⊃ R. Let ~u ∈ Φ, ~u ⊥ ~w. We
want to show that T ~u(t) = T ~w(t).

Let t be a tiling of R, and let t∗ be the tiling of B\R such that every dimer is
parallel to ~w. Applying Lemma 6.2 to the box B, we see that T ~u(tt t∗) = T ~w(t):
it remains to show that T ~u(t t t∗)− T ~u(t) = 0.

Let t~w be the tiling of R such that every domino is parallel to ~w, and let
Q ⊂ π be a basic square such that int(Q) ⊂ A \ D. Let tQ be the set of N/2
dominoes of t∗ contained in Q+ [0, N ]~w: we have

T ~u(t t t∗)− T ~u(t) = T ~u(t, t∗) + T ~u(t∗, t) =
∑

int(Q)⊂A\D

T ~u(tQ, t) + T ~u(t, tQ).

Notice that, for every domino d ∈ tQ, ~v(d) = color(Q)~w. Moreover, the dominoes
in St,~u = S(t, ~u,Q,N) are precisely the ones that intersect the ~u-shade of at least
one domino of tQ, so that

T ~u(tQ, t) =
1

4

∑
d∈St,~u

det(~v(d), color(Q)~w, ~u) =
color(Q)

4

∑
d∈St,~u

det(~v(d), ~w, ~u),
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which equals 0 by Lemma 6.3. Analogously (the first equality below uses Lemma
3.1),

T ~u(t, tQ) = T−~u(tQ, t) =
color(Q)

4

∑
d∈S(t,−~u,Q,n)

det(~v(d), ~w,−~u) = 0.

Since T ~w(t) ∈ Z (by Proposition 5.5), we have completed the proof.

Lemma 6.5. Let N ∈ Z be odd, and let R be a cylinder with depth N that admits

a tiling t. Then T
~i(t) = T

~j(t) = T
~k(t) ∈ 1

2
Z.

In fact, we prove in Proposition 6.10 that T
~i(t) = T

~j(t) = T
~k(t) ∈ Z, but for

our proof this first step is needed. Also, it is not clear when a cylinder with odd
depth N is tileable: see Lemma 6.7 for a related result.

Proof. Suppose R has base D and axis ~w ∈ ∆, so that R = D+ [0, N ]~w, and let
~u ∈ Φ, ~u ⊥ ~w. Let t be a tiling of R. We want to show that T ~u(t) = T ~w(t).

Consider R′ = D+ [0, 2N ]~w, and the tiling t̂ = t0 t t1 of R′ which consists of
two copies t0 and t1 of t, where t0 tiles the subregion D+ [0, N ]~w and t1 tiles the
subregion D + [N, 2N ]~w.

By Proposition 6.4, T ~u(t̂) = T ~w(t̂) ∈ Z. Now clearly T ~u(t̂) = 2T ~u(t), because
the ~u-shades of dimers of t0 do not intersect dimers of t1 (and vice-versa). We
need to prove that T ~w(t̂) = 2T ~w(t).

Notice that T ~w(t̂) = T ~w(t0) + T ~w(t1) + T ~w(t0, t1) = 2T ~w(t) + T ~w(t0, t1). Let
d0 ∈ t0, d1 ∈ t1 be dominoes, and let d̃0 and d̃1 be the dominoes of t that they
“refer to”. If d̃0 6= d̃1, then clearly

d1 ∩ S ~w(d0) 6= ∅ ⇔ d̃1 ∩ (S ~w(d̃0) ∪ S−~w(d̃0)) 6= ∅

and τ ~w(d0, d1) = 1
4

det(~v(d1), ~v(d0), ~w) = −1
4

det(~v(d̃1), ~v(d̃0), ~w) = τ−~w(d̃0, d̃1) −
τ ~w(d̃0, d̃1). Therefore, T ~w(t0, t1) =

∑
d,d′∈t τ

−~w(d, d′) − τ ~w(d, d′) = 0. Conse-

quently, T ~w(t̂) = 2T ~w(t) and thus T ~u(t) = T ~w(t).

Moreover, since T ~w(t) = T ~w(t̂)/2 and T ~w(t̂) ∈ Z, it follows that T ~w(t) ∈ 1
2
Z,

which completes the proof.

Lemma 6.6. Let D ⊂ π be a planar region, and let ~w ∈ ∆ be the normal vector
for π. For each k ∈ N, write Rk = D + [0, 2k + 1]~w. If k1, k2 ∈ N, then for each
~u ∈ Φ and every pair of tilings t1 of Rk1, t2 of Rk2, T ~u(t1)− T ~u(t2) ∈ Z.

Should Rk1 or Rk2 not be tileable, the statement is vacuously true.
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Proof. By Lemma 6.5, it suffices to show the result for ~u ⊥ ~w. Let t1 and t2 be
tilings of Rk1 and Rk2 , respectively. Consider the cylinder with even depth R =
D+[0, 2k1+2k2+2]~w, and let t̃2 denote the tiling of D+[2k1+1, 2k1+1+2k2+1]~w
which is a copy of t2. If t = t1 t t̃2, then T ~u(t) ∈ Z, by Proposition 6.4. Also,
since ~u ⊥ ~w, T ~u(t) = T ~u(t1) + T ~u(t̃2) = T ~u(t1) + T ~u(t2), so that

T ~u(t1)− T ~u(t2) = T ~u(t1) + T ~u(t2)− 2T ~u(t2) = T ~u(t)− 2T ~u(t2).

Since, by Lemma 6.5, 2T ~u(t2) ∈ Z, we’re done.

Lemma 6.7. Let π be a basic plane with normal ~w ∈ ∆, and let D ⊂ π be a
planar region with connected interior such that

#(black squares in D) = #(white squares in D) = n.

Then there exists a tiling t0 of D + [0, 2n− 1]~w such that T ~w(t0) ∈ Z.

Notice that, with Lemma 6.7, the proof of Proposition 3.3 is complete. How-
ever, we need some preparation before we can prove Lemma 6.7.

It is a well-known fact that domino tilings of a region can be seen as perfect
matchings of a related graph: in fact, if we consider the graph whose vertices
are centers of the cubes (squares in the planar case) of the region, and where
two vertices are joined if their Euclidean distance is 1, then a domino tiling can
be directly translated as a perfect matching in this graph. This graph is called
the associated graph of a region R (planar or spatial), and denoted G(R). Since
the proof of Lemma 6.7 will come more naturally in the setting of matchings in
associated graphs, we shall revert to this viewpoint for what follows.

A bicoloring of a graph G is a coloring of each vertex of G as black or white, in
such a way that no two adjacent vertices have the same color. Associated graphs
for a region R are always bicolored: each vertex inherits the color of the cube (or
square) it refers to. For what follows, we shall assume that all graphs are already
bicolored. Moreover, any subgraph of a bicolored graph G (for instance, the one
obtained after deleting a vertex) shall inherit the bicoloring of G.

Lemma 6.8. Let T be a bicolored tree. If all leaves are white, then the number
of white vertices in T is strictly larger than the number of black vertices in T .

By definition, a tree is connected and, therefore, nonempty.

Proof. We proceed by induction on the number of vertices. The result is clearly
true if T has three or fewer vertices. Suppose, by induction, that the result holds
for balanced trees with m vertices for any m < n. Let T be a tree with n vertices
such that all leaves are white.



Domino tilings of three-dimensional regions — October 27, 2015 29

Let w ∈ T be a (white) leaf, and let v ∈ T be the only neighbor of w. Let F
be the forest obtained by deleting w and v: F is nonempty, otherwise v would
have to be a black leaf, which contradicts the hypothesis. Now for each connected
component T ′ of F , T ′ is a tree with less than n vertices such that all leaves are
white: therefore, by induction, F has more white vertices than black vertices.
However, the vertices of T are those of F plus one black vertex (v) and one white
vertex (w), so that the number of white vertices in T is greater than that of black
ones. By induction, we get the result.

A connected bicolored graph G is balanced if the number of white vertices
equals the number of black ones. By Lemma 6.8, a balanced tree must have at
least one white leaf and one black leaf.

A perfect matching of a bipartite graph G is a set of pairwise disjoint edges
of G, such that every vertex is adjacent to (exactly) one of the edges in the
matching. Clearly, a necessary condition for the existence of a perfect matching
is that G is balanced.

Let G = (V,E) be a bicolored graph (in this notation, V is the vertex set of
G, and E is its edge set), and let In = {0, 1, . . . , n−1}. Let G×In = (V ×In, En),
where En consists of all edges connecting (v, j) and (v, j+ 1), for each v ∈ V and
j ∈ In−1, plus the edges connecting (v1, j) and (v2, j) for each j ∈ In whenever
the edge v1v2 ∈ E. The color of a vertex (v, j) ∈ G × In equals the color of v if
and only if j is even. Naturally, if D ⊂ π is a planar region with normal ~w, then
G(D)× In ≈ G(D + [0, n]~w).

Let G be a (nonempty) balanced connected bicolored graph with 2n vertices.
Algorithm 1 finds a perfect matching M of G× I2n−1.

Lemma 6.9. If G is a connected bicolored balanced graph with 2n vertices, then
the set of edges M generated by running Algorithm 1 on G is a perfect matching
of G× I2n−1.

Proof. To see that M ⊂ E(G × I2n−1), notice that any spanning tree has 2n
vertices, and exactly two vertices are deleted in each iteration, so that the last
iteration where Tk 6= ∅ occurs when k = n − 1. In all other iterations (i.e.,
0 ≤ k < n − 1), clearly any edge created is contained in E(G × I2n−1). When
k = n − 1, Tk is a balanced tree with two vertices, so Pk = vwvb and only the
edges {(v, 2n − 3)(v, 2n − 2) | v ∈ T \ Tk} plus the edge (vw, 2n − 2)(vb, 2n − 2)
are created. Now these edges are contained in E(G× I2n−1), so we’re done.

This proves that M is a subset of the edgeset of G × I2n−1. The reader will
easily convince himself that it is a perfect matching (i.e., that every vertex (v, j)
of G× I2n−1 is adjacent to exactly one edge of M).
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Algorithm 1 Algorithm for finding a perfect matching M of G× I2n−1.

Pick a spanning tree T for G. . T is a balanced tree

M0 ← ∅
T0 ← T
k ← 0
while Tk 6= ∅ do

Pick a white leaf vw and a black leaf vb of Tk
. Lemma 6.8 ensures that a balanced tree has at least one white leaf and one black leaf

Pick a path Pk = vk,1vk,2 . . . vk,mk in Tk from vw to vb
. i.e., vk,1 = vw, vk,mk

= vb; notice that mk is necessarily even

Dk ← {(v, 2k − 1)(v, 2k) | v ∈ T \ Tk} t {(v, 2k)(v, 2k + 1) | v ∈ Tk \ Pk)}
Ek ← {(vk,2i−1vk,2i, 2k) | 1 ≤ i ≤ mk

2
} t {(vk,2ivk,2i+1, 2k + 1) | 1 ≤ i < mk

2
}

. Here (vw, l) means the edge (v, l)(w, l), i.e., the edge between the vertices (v, l) and (w, l)

Mk+1 ←Mk tDk t Ek
Tk+1 ← Tk \ {vw, vb}

. Notice that Tk+1 is still a balanced tree (except in the last iteration, when it is empty)

k ← k + 1
end while
M ←Mk

Next we shall prove Lemma 6.7. In order to make the explanation clearer,
we shall first introduce a few concepts. Let G be a bicolored connected balanced
graph, and consider the perfect matching M of G × I2n−1 obtained by running
Algorithm 1 on G, as well as the intermediate objects that were created, such as
Ek and Pk.

Given an edge e = (vw, j) of Ek, we say e is adjacent to v and to w (even
though it is not an edge of G). For v ∈ G and 0 ≤ k ≤ 2n − 1, we write
E(v, k) = {e ∈ Ek | e adjacent to v}.

Consider the paths Pk = vk,1vk,2 . . . vk,mk chosen in each step of the algorithm
(we shall also use this notation in the proof). If j > k, we say that a path Pj
meets Pk at v ∈ G if v = vj,i ∈ Pk for some i > 1, but vj,i−1 /∈ Pk. Analogously,
Pj leaves Pk at v if v = vj,i ∈ Pk for some i < mj, but vj,i+1 /∈ Pk. Notice that
a path Pj can meet and leave Pk at the same vertex v. Also, notice that Pj can
only meet (resp. leave) Pk at most once (i.e., at no more than one vertex).

Proof of Lemma 6.7. Consider the graph G = G(D) associated with the planar
region D. Clearly G is balanced; since D has connected interior, it follows that
G is also connected. Let M be the perfect matching obtained after running
Algorithm 1 on G, and let t be the tiling of D + [0, 2n− 1]~w associated with M .

If e0, e1 ∈M , we will abuse notation and write τ ~w(e0, e1) = τ ~w(d0, d1), where
di ∈ t is the domino associated with ei ∈ M : we also say that two edges are
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parallel if their associated dominoes are parallel.

Notice that the only dominoes that are not parallel to ~w are those associated
with the edges of Ek for each k: therefore,

T ~w(t) =
∑
i≤j

T ~w(Ei, Ej) =
∑
i≤j

e∈Ei,e′∈Ej

τ ~w(e, e′).

Fix 0 ≤ k ≤ n− 1. We want to show that
∑

j≥k T
~w(Ek, Ej) ∈ Z. First, write∑

j≥k

T ~w(Ek, Ej) =
∑

1<i<mk
j≥k

T ~w(E(vk,i, k), E(vk,i, j));

we may ignore vk,1 and vk,mk because they are deleted from the tree in step k, so
that E(vk,1, j) = E(vk,mk , j) = ∅ for each j > k (for j = k, it contains only one
edge, so there is also no effect).

(a) Some cases where Pk goes straight at
v: the effects are, respectively, 1, 1/2, 1/2
and 0.

(b) Some cases where Pk makes a left turn
at v: in this case the red segments have
nonzero effect on one another (in this case
it is 1/4): the effects on the blue segments
are, respectively, 1/2, 0, 1/4 and −1/4.

Figure 15: Edges of Ek (red) and Ej (blue) for some j > k, portrayed as edges
of G. The edges are oriented as ~v(d), where d is the associated domino. The
portrayed vertex is v, which we assume here to be black: notice that v is one of
the endpoints of Pj in the bottom two cases of each figure.

For v = vk,i, 1 < i < mk, we claim that, modulo 1,
∑

j≥k T
~w(E(v, k), E(v, j))

equals

1

2
(#{j > k |Pj meets Pk at v}+ #{j > k |Pj leaves Pk at v})

(in other words, their difference is an integer).
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If the two edges in E(v, k) are parallel (i.e., Pk goes straight at v), then
T ~w(E(v, k), E(v, k)) = 0. By checking a number of cases (see Figure 15a) we see
that the following holds for each j > k:

T ~w(E(v, k), E(v, j)) =


±1, Pj meets and leaves Pk at v;

±1/2, Pj either meets or leaves Pk at v;

0, otherwise.

(3)

If the two edges in E(v, k) are not parallel (i.e., Pk makes a turn at v), we
proceed as follows: assume that the path Pk makes a left turn and that v is
a black vertex (the other cases are analogous). Let k′ be the step where v is
chosen as the black leaf to be deleted (so that v = vk′,mk′ ): again, inspection
of a few possible cases (some of which are shown in Figure 15b) shows that (3)
holds for k < j < k′ (and for j > k′, obviously T ~w(E(v, k), E(v, j)) = 0). Also,
T ~w(E(v, k), E(v, k)) = 1/4 (because it is a left turn and v is black), and (see the
last two examples in Figure 15b)

T ~w((E(v, k), E(v, k′)) =

{
1/4, Pk′ meets Pk at v;

−1/4, otherwise;

so that T ~w(E(v, k), E(v, k))+T ~w((E(v, k), E(v, k′)) = 1/2 if and only if Pk′ meets
Pj at v (and 0 otherwise), so that we get the result.

Now let N(v) = #{j > k |Pj meets Pk at v} + #{j > k |Pj leaves Pk at v}.
To finish the proof, we need to show that

N =
∑

1<i<mk

N(vk,i) = #{j > k |Pj meets Pk}+ #{j > k |Pj leaves Pk}

is even. Because all Pj’s are paths in a tree Tk, it follows that each path meets
(or leaves) Pk at most once. Therefore, each j > k may contribute 0 (if it never
meets nor leaves Pk), 1 (if it either meets or leaves Pk, but not both) or 2 (if it
meets and leaves Pk) to the above sum. This contribution is 0 if vj,1, vj,mj ∈ Pk; it
is 0 or 2 if vj,1, vj,mj /∈ Pk. If exactly one of the two is in Pk, the contribution is 1;
however, since #{j > k | vj,1 ∈ Pk, vj,mj /∈ Pk} = #{j > k | vj,1 /∈ Pk, vj,mj ∈ Pk},
it follows that N is even, so that T ~w(t) =

∑
j≥k T

~w(Ek, Ej) ≡ N/2 (mod 1) is an
integer.

We sum up our main results in the following proposition:

Proposition 6.10. Let D ⊂ π be a planar region with normal vector ~w and
connected interior such that

#(black squares in D) = #(white squares in D) = n.
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Then D+[0, 2n−1]~w is tileable. Moreover, for each k ∈ N such that D+[0, 2k−1]~w
is tileable (in particular, for each k ≥ n), every tiling t of D+[0, 2k−1]~w satisfies

T
~i(t) = T

~j(t) = T
~k(t) ∈ Z.

Proof. Follows directly from Lemmas 6.5, 6.6 and 6.7.

Now that we have seen that the twist, as in Definition 3.4, is well-defined for
cylinders, we may adopt the notation Tw(t) when t is a tiling of a cylinder.

7 Additive properties and proof of Theorem 1

The goal for this section is to discuss some additive properties of the twist and
to complete the proof of Theorem 1.

Lemma 7.1. Let R0 and R1 be two regions whose interiors are disjoint. Let
tR0,0 and tR0,1 be two tilings of R0 and tR1,0 and tR1,1 be two tilings of R1. For
each (i, j) ∈ {0, 1}2, set tij = tR0,i t tR1,j, which is a tiling of R = R0 ∪R1. Let
Γ∗i = Γ∗(tRi,0, tRi,1), i = 0, 1. Then, for each ~u ∈ Φ,

T ~u(t00)− T ~u(t01)− T ~u(t10) + T ~u(t11) = 2
∑

γ0∈Γ∗0,γ1∈Γ∗1

Link(γ0, γ1).

In particular, if R0 or R1 is simply connected, then T ~u(t00)−T ~u(t01)−T ~u(t10) +
T ~u(t11) = 0.

Proof. For shortness, given two sets of segments A0 and A1, we shall in this proof
write T ~usym(A0, A1) = T ~u(A0, A1) + T ~u(A1, A0).

For each (i, j) ∈ {0, 1}2, we have

T ~u(tij) = T ~u(tR0,i t tR1,j) = T ~u(tR0,i) + T ~u(tR1,j) + T ~usym(tR0,i, tR1,j).

Notice that the last term is the only one that depends on both i and j, so that
it is the only one that does not cancel out in the sum

∑
i,j∈{0,1}(−1)i+j Tw(tij).

Therefore, we have∑
i,j∈{0,1}

(−1)i+jT ~u(tij) =
∑

i,j∈{0,1}

(−1)i+jT ~usym(tR0,i, tR1,j) =

= T ~usym(tR0,0 t (−tR0,1), tR1,0 t (−tR1,1)) =
∑

γ0∈Γ∗0,γ1∈Γ∗1

T ~usym(γ0, γ1).

Since for each pair γ0, γ1 in the sum we have γi ⊂ int(Ri), it follows that γ0∩γ1 =
∅. Hence, by Lemma 4.3, T ~usym(γ0, γ1) = 2 Link(γ0, γ1), which yields the result.
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Corollary 7.2. Let R be a simply connected region, and suppose that there exists
a box B ⊃ R such that B \ R is tileable. If t0, t1 are two tilings of R and ta, tb
are two tilings of B \ R, then

Tw(t0 t ta)− Tw(t1 t ta) = Tw(t0 t tb)− Tw(t1 t tb).

Proof. Use Lemma 7.1 with R0 = R, R1 = B \ R.

Lemma 7.3. Suppose L,M,N are even positive integers, and let B = [0, L] ×
[0,M ]× [0, N ]. If R ⊂ B is a cylinder with even depth, then there exists a tiling
t∗ of B \ R such that Tw(t t t∗) = Tw(t) for each tiling t of R.

Corollary 7.2 and Lemma 7.3 imply that for any tiling t̃∗ of B\R, there exists
a constant K such that, for any tiling t of R, Tw(t t t̃∗) = Tw(t) +K.

Proof. We may without loss of generality assume that the axis of R is ~k, so that
R = D + [E,F ]~k, where D ⊂ [0, L]× [0,M ]× {0} and F − E is even.

Let B1 = [0, L] × [0,M ] × [E,F ]. Clearly there exists a tiling t1,∗ of B1 \ R
such that every domino is parallel to ~k: hence, Tw(t t t1,∗) = T

~k(t t t1,∗) =

T
~k(t) = Tw(t) for each tiling t of R. On the other hand, since L is even,

there exists a tiling t2,∗ of B \ B1 such that every dimer is parallel to ~i, so that

Tw(t t t2,∗) = T
~i(t t t2,∗) = T

~i(t) = Tw(t) for each tiling t of B1. Setting
t∗ = t1,∗ t t2,∗ we get the result.

Lemma 7.4. Let R be a tileable cylinder with base D, axis ~w ∈ ∆ and depth n.
Let R′ = D + [0, 2n]~w be a cylinder with even depth formed by two copies of R;
let B ⊃ R′ be a box with all dimensions even. Then there exist a tiling t∗ of B\R
and a constant K such that, for each tiling t of R, Tw(t t t∗) = Tw(t) +K.

Proof. By Lemma 7.3, there exists a tiling t̃ of B\R′ such that Tw(tt t̃) = Tw(t)
for each tiling t of R′. Fix a tiling t0 of D + [n, 2n]~w (which is tileable because
R is tileable). If we set t∗ = t0 t t̃ and K = Tw(t0), then for every tiling t of R,

Tw(t t t∗) = Tw(t t t0 t t̃) = Tw(t t t0) = Tw(t) + Tw(t0);

the last equality holding by fixing ~u ∈ Φ, ~u ⊥ ~w and writing Tw(t t t0) =
T ~u(t t t0) = T ~u(t) + T ~u(t0).

Proof of Theorem 1. The twist is constructed in Definition 3.4 and its integrality
follows from Proposition 3.3. Lemma 3.5 and Proposition 3.6 yield items (i) and
(ii) . To see item (iii), let R be a duplex region with axis ~w, and consider the
tiling t~w such that all dominoes are parallel to ~w: clearly Tw(t~w) = P ′t~w(1) = 0
(we assume that the reader is familiar with the notation from [18]). Since the
space of domino tilings of R is connected by flips and trits ([18, Theorem 2]),
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Proposition 3.6, together with Theorems 1 and 2 from [18], implies that for each
tiling t of R, Tw(t) = P ′t(1) (for a more direct proof of item (iii), see [17]).

We’re left with proving item (iv). Let R be a cylinder, and suppose R =⋃
1≤j≤mRj, where each Rj is a cylinder (they need not have the same axis) and

int(Ri)∩int(Rj) = ∅ if i 6= j. Suppose the bases, axes and depths are respectively,
D, ~w, n and Dj, ~wj, nj.

Let tj,0 and tj,1 be two tilings of Rj. It suffices to show that

Tw

( ⊔
1≤j≤m

tj,1

)
− Tw

( ⊔
1≤j≤m

tj,0

)
=
∑

1≤j≤m

(Tw(tj,1)− Tw(tj,0)).

For 0 ≤ j ≤ m, let tj =
⊔

1≤i≤j ti,1 t
⊔
j<i≤m ti,0. We want to show that

Tw(tm)− Tw(t0) =
∑

1≤j≤m(Tw(tj,1)− Tw(tj,0)).

Let B be a box with all dimensions even such that D + [0, 2n]~w ⊂ B and
Dj + [0, 2nj]~wj ⊂ B for j = 1, . . . ,m. By Lemma 7.4, there exist: a tiling t∗ of
B\R and a constantK; and for each j, a tiling tj,∗ of B\Rj and a constantKj such
that Tw(tt t∗) = Tw(t) +K for each tiling t of R, and Tw(tt tj,∗) = Tw(t) +Kj

for each tiling t of Rj.

Write t̂j = t∗ t
⊔

1≤i<j ti,1 t
⊔
j<i≤m ti,0 for each j, so that t̂j is a tiling of

B \ Rj. Notice that, for 1 ≤ j ≤ m, tj t t∗ = tj,1 t t̂j and tj−1 t t∗ = tj,0 t t̂j.
Therefore, we have

Tw(tm)− Tw(t0) =
∑

1≤j≤m

(Tw(tj)− Tw(tj−1))

=
∑

1≤j≤m

((Tw(tj t t∗)−K)− (Tw(tj−1 t t∗)−K))

=
∑

1≤j≤m

(Tw(tj,1 t t̂j)− Tw(tj,0 t t̂j))
†
=
∑

1≤j≤m

(Tw(tj,1 t tj,∗)− Tw(tj,0 t tj,∗))

=
∑

1≤j≤m

((Tw(tj,1) +Kj)− (Tw(tj,0) +Kj)) =
∑

1≤j≤m

(Tw(tj,1)− Tw(tj,0)).

Equality † holds by Corollary 7.2, because t̂j and tj,∗ are two tilings of B\Rj.

8 Examples and counterexamples

In this short section, we give a few examples and counterexamples that help
motivate the theory and some of the results obtained.

For instance, when looking at Proposition 3.3, one might wonder whether the
pretwists are always integers or if they always coincide, at least for, say, simply
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(a) A tiling t satis-

fying T
~k(t) = 1/4.

(b) A tiling of a pseudocylin-

der where T
~i(t) 6= T

~k(t).

Figure 16: Two examples of tilings: ~k is chosen to point towards the paper.

(a) A tiling of a cylinder with depth 3 allowing
no flips or trits.

(b) A tiling of a cylinder of depth 6 whose flip and trit connected component contains only one
other tiling.

Figure 17: Examples of regions whose space of tilings is not connected by flips
and trits. Notice that these regions don’t allow room for a trit, and flips are
clearly insufficient to connect the space.

connected or contractible regions. This turns out not to be the case, as Figure

16a shows: for the tiling t portrayed there, T
~i(t) = T

~j(t) = 0 but T
~k(t) = 1/4.

One might ask whether the pretwists coincide in a pseudocylinder (i.e., if the
base is not necessarily simply connected): the tiling t portrayed in Figure 16b

satisfies T
~i(t) = T

~j(t) = 0 and T
~k(t) = 1. One can prove that they coincide if the

pseudocylinder has odd depth (via a modification in the proofs of Proposition 6.4
and 6.10), but we shall not dwell on this.

Connectivity by flips and trits does not hold for cylinders in general, unlike
the case with two floors. Figure 17 shows two counter-examples, one with odd
depth and one with even depth. We do not know, however, whether this holds
for boxes.

For more examples, we refer the reader to [17]. A particularly interesting
example is the 4 × 4 × 4 box, which has 5051532105 tilings, divided into 93 flip
connected components. The largest connected component has zero twist and
4412646453 tilings; and the values of the twist range from −4 to 4.
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