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Abstract. The Monster tower, also known as the Semple tower, is a sequence of manifolds with distribu-

tions of interest to both differential and algebraic geometers. Each manifold is projective bundle over the

previous. Moreover, each level is a fiber compactified jet bundle equipped with an action of finite jets of
the diffeomorphism group. There is a correspondence between points in the tower and curves in the base

manifold. These points admit a stratification which can be encoded by a word called the RVT code. Here,
we derive the spelling rules for these words in the case of a three dimensional base. That is, we determine

precisely which words are realized by points in the tower. To this end, we study the incidence relations

between certain subtowers, called Baby Monsters, and present a general method for determining the level at
which each Baby Monster is born. Here, we focus on the case where the base manifold is three dimensional,

but all the methods presented generalize to bases of arbitrary dimension.

1. Introduction

1.1. Motivation. The Monster tower, also known as the Semple tower, lies in the intersection of differential
geometry, non-holonomic mechanics, singularity theory, and algebraic geometry. Cartan ([2]) studied the
diffeomorphism group action on jet spaces, which led to developments in the fields of Goursat distributions
and sub-Riemannian geometry. Jean ([8]), Luca and Risler ([12]), Li and Respondek ([13]), Pelletier and
Slayman ([20, 21]), and others have studied models of various kinematic systems (a car pulling n trailers,
motion of an articulated arm, n-bar systems). Montgomery and Zhitomirskii ([15]) studied the relationship
with curve singularities; later, so did we ([4, 24]). And we discovered in [6] that algebraic geometers have long
studied these objects under different names. We have begun pursuing these connections ([5]) and working
with algebraic geometers to consolidate understanding and improve existing terminology and techniques
([9]). Here, we study the RVT code for the tower, which is invariant under the action of the diffeomorphism
group. This is related to work on the classification problem studied by Mormul ([16, 17, 18]), Montgomery
and Zhitomirskii ([14, 15]), the authors ([4]), and others.

In the geometric theory of differential equations, we speculate that there may be some interesting con-
nections between the singularity theory of the Monster tower and the general Monge problem for under-
determined systems of ordinary differential equations with an arbitrary number of degrees of freedom. In
[10], the authors derive sufficient conditions, in terms of truncated multi-flag systems, for the existence of a
Monge-Cartan parametrization of the general solution of such systems in the regular case. To our knowledge,
no connection has been made with the singular theory of multi-flags presented in this note. Similar unde-
termined systems of ordinary differential equations are common in geometric control theory when studying
flat outputs of nonlinear control systems ([22]). A detailed account of the geometry of differential equations
in jet spaces can be found in [11], where symmetry methods from contact and symplectic geometry are used
to solve non-trivial nonlinear partial and ordinary differential equations.

Thus, it is apparent that this object is of interest to a variety of pure and applied mathematicians, and
that it presents a wealth of interesting problems which have potential to shed light in surprising areas.

1.2. History. The subject begins with the study of Goursat distributions, which are bracket-generating
(completely non-holonomic) but slow growing. Cartan ([2]) studied the model of the canonical contact
distribution on the jet space Jk(R,R). All Goursat distributions were believed to be equivalent to Cartan’s
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Table 1. RVT Code Spelling Rules

Letter Can be followed by Cannot be followed by
R R, V Ti, Lj

V R, V, T1, L1 T2, L2, L3

T1 R, V, T1, L1 T2, L2, L3

T2 R, V, T2, L3 T1, L1, L2

L1 R, V, T1, T2, L1, L2, L3 ∅
L2 R, V, T1, T2, L1, L2, L3 ∅
L3 R, V, T1, T2, L1, L2, L3 ∅

under the action of the diffeomorphism group until Giaro, Kumpera, and Ruiz discovered the first singularity
in 1978 ([7]).

Jean ([8]) studied the kinematic model of a car pulling N trailers, a system which is locally universal
for Goursat distributions of corank N + 1. He developed a geometric stratification given by regions in the
configuration space of the model in terms of critical angles. Montgomery and Zhitomirskii ([14]) introduced
the Monster tower, a sequence of manifolds with distributions in which every Goursat germ occurs, allowing
for Jean’s strata to be recast in terms of positions of members of a canonical subflag of the Goursat flag.
Mormul ([16]) labelled the strata from [14] by words in the letters GST, which became the RVT code in [15].
In [15], Montgomery and Zhitomirskii showed that Goursat germs correspond to finite jets of Legendrian
curve germs, and that the RVT coding corresponds to several classical invariants in the singularity theory
of planar curves. They also gave complete spelling rules for the RVT code in this case.

These studies were all concerned with the Monster tower whose base is R2. In [6], we generalized this to
towers with base Rn. We also discovered that this object was known to algebraic geometers as the Semple
tower. We also began the effort to generalize the RVT code, and find spelling rules to describe which words
were admissible (Theorem 1). That effort is completed here (Theorem 2). The methods used in the present
contribution were first developed in [4], in which we also classified points in the first four levels of the tower.
Here, we will complete the spelling rules for base R3. Our techniques generalize to towers with base Rn.

1.3. Main Results. Recall that the Monster tower is stratified by the action of the diffeomorphism group,
and the RVT code is an invariant labeling of orbits. Note that the combinatorial data in the RVT code
forces a finite number of inequivalent classes at each level of the tower, but there may be moduli within a
given class (see [15]). In [6], we stated the following incomplete spelling rules, which followed from [15].

Theorem 1 ([6]). In the Semple tower with base R3, every RVT code must begin with R, and T1 cannot
follow R.

Here, we add the missing rules, yielding the complete description of realizable RVT codes. Our alphabet is
the set {R, V, T1, T2, L1, L2, L3}. Note that these seven letters correspond precisely to the seven possibilities
found in Semple’s original work ([23]). We therefore have the following combinatorial description of the
diffeomorphism group orbits.

Theorem 2 (Spelling Rules). In the Semple tower with base R3, there exists at point p with RVT code ω if
and only if the word ω satisfies:

(1) Every word must begin with R
(2) R cannot be followed by Ti or Lj

(3) V cannot be followed by T2, L2, or L3. Same for T1
(4) T2 cannot be followed by T1, L1, or L2

(5) L1, L2, and L3 can be followed by any letter.

For example, the word RV V RV T1L1T2L3L2 is admissible, but V T2T1RT2 breaks rules (1)–(4). The
following Table 1 summarizes this Theorem.
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1.4. Outline. In Section 2, we give the requisite background material and references. We define the Monster
tower, Baby Monsters, and the RVT coding system.

In Section 3, we describe our main tool, the method of critical hyperplanes. We begin our main example
which will inform the rest of the paper. This example – the code RV LT2 – will lend itself to a model proof
of one spelling rule, whose technique can be repeated to obtain the remaining rules. Moreover, this example
will serve to demonstrate the ease with which our results could be extended to towers with bases Rn for
n > 3. We choose this code to focus on because it neatly demonstrates the general method as well as some
of the subtleties which abound in this work and thereby necessitate a delicate touch. In particular, the code
RV L1 was studied extensively in [4], so we restate and build upon the work there. We then amend the code
by adding T2, which is somewhat exotic and interesting, but still not too messy.

In Section 4, we restate our main theorem and attend to its proof. We focus on one spelling rule, as the
rest are proved in the same fashion, and the proofs are tedious. The main proof proceeds by induction on
the number of letters appearing the code which belong to the set S = {T2, L2, L3}.

In Section 5, we describe the surprising relationships between this work and other branches of pure and
applied mathematics, including current work in algebraic geometry ([9]) and control theory ([20]). In doing
so, we look at both recent and potential future directions.

2. Background

2.1. The Tower. The Monster/Semple tower is constructed through a series of Cartan prolongations. Begin
with a smooth d-dimensional manifold M0 and a rank r distribution (subbundle of TM0) denoted ∆0. The
first prolongation is the fiber bundle

M1 =
⋃

p∈M0

P∆0
p,

whose elements have the form (p, l), where p is a point in M0 and l is a line in the subspace ∆0
p. The

distribution on M1 is given by

∆1
(p,l) = (dπ1

0)−1(l)

where π1
0 : M1 →M0 is the bundle projection. Note that M1 has dimension d+ r− 1, and that ∆1 is a rank

r distribution.
Iterating the prolongation procedure gives a sequence of manifolds

M i =
⋃

p∈Mi−1

P∆i−1
p .

Every point in M i has the form (p, l), where p is a point in M i−1 and l is a line in the distribution ∆i−1
p . The

dimension of M i is thus d+ i(r− 1). The bundle projection map πi
i−1 : M i →M i−1 has fibers diffeomorphic

to P∆i−1
p
∼= RPr−1. The rank r distribution on M i is given by

∆i
(p,l) = (dπi

i−1)−1(l).

The distributions ∆i are sometimes known as Goursat multi-flags.

Definition 1. The Monster or Semple tower is the sequence of projective bundles

· · · →M i →M i−1 → · · · →M1 →M0

equipped with the distribution ∆i at each level.

Of particular interest is the case of M0 = Rn and ∆0 = TRn. We refer to the consequent tower as the
Rn-tower or the tower with n-dimensional base. The tower with base M0 = R2 and ∆0 = TR2 has been
studied extensively ([15]). Here, as in [4], we focus on the case M0 = R3 and ∆0 = TR3. However, our
methods generalize to the Rn-tower for arbitrary n.

To be clear, in the remainder of this paper we are taking M0 = R3 and ∆0 = TR3.
3



2.2. Regular, Critical, and Vertical Directions and Points. By composing the projection maps
πk
k−1, π

k−1
k−2 , . . . , π

i+1
i we obtain projections πk

i : Mk → M i, i < k. For pk ∈ Mk, we denote πk
i (pk) by

pi. The horizontal curves at level i (tangent to ∆i) naturally prolong (i.e., lift) to horizontal curves at level
k. However, the curves coinciding with fibers of πi

i−1 are special – they project down to points and are not
prolongations of curves from below. They are called vertical and can themselves be prolonged to (first order)
tangency curves, then prolonged again to (second order) tangency curves, and so on. Vertical curves and
their prolongations are called critical. If a curve is vertical or critical then we say its tangent directions are
as well.

Thus, at each level i ≥ 2 there are vertical directions, and, in addition, at each level i ≥ 3 there are tan-
gency directions different from the vertical direction. At any level, all the remaining (non-critical) horizontal
directions are called regular. Finally, we call a point (p, l) ∈ M i regular, vertical, or critical if the direction
of l is.

2.3. Baby Monsters and Critical Hyperplanes. Recall that one can apply the prolongation procedure
to any smooth manifold F in place of R3. In particular, we will prolong the fibers F of the bundle projections
πi
i−1, obtaining new subtowers of the Monster tower. We call these subtowers Baby Monsters.

Let pi ∈ M i and consider the fiber Fi(pi) := (πi
i−1)−1(pi−1) ⊂ M i. This is an integral submanifold for

∆i, so we can prolong the pair (Fi(pi), TFi(pi)). Denote the jth prolongation of this pair by (F j
i (pi), δ

j
i ).

Note that F j
i (pi) is a smooth submanifold of M i+j , and

δji (q) = ∆i+j(q) ∩ TqF j
i (pi)

for q ∈ F j
i (pi).

Definition 2. We call the tower (F j
i (pi), δ

j
i ) a Baby Monster born at level i. For q ∈ F j

i (pi), we call δji (q)
a critical hyperplane.

Note that the Baby Monster is a subtower of the Monster tower, with dimF j
i (pi) = 2+j and dim δji (q) = 2.

While the terminology hyperplane comes from a more general setting, here we will simply refer to critical
planes.

2.4. KR Coordinates. It is convenient to work in a canonical coordinate system, called Kumpera-Ruiz or
KR-coordinates ([7]). This is a generalization of jet coordinates for jet spaces, but that takes into account
the projective nature of the fibers. These coordinates were described in detail for the R2-tower in [15] and for
our current case, the R3-tower, in [6]. We briefly summarize here for completeness, and refer the interested
reader to Section 4.2 of [6].

The KR coordinates for Mk are of the form (x, y, z, u1, v1, . . . uk, vk). They satisfy:

(1) the projection πk
i (x, y, z, u1, v1, . . . uk, vk) = (x, y, z, u1, v1, . . . ui, vi);

(2) the coordinates uk, vk are affine coordinates for the fiber Fk;
(3) there are 3k many charts covering Mk, corresponding to the three affine charts needed to cover each

Fi
∼= RP2 for 1 ≤ i ≤ k.

Specific examples will be worked out below. Note that the projective fiber Fi is always coordinatized
homogeneously by [dfi : dui : dvi], where fi is some coordinate from a lower level. The covector dfi is called
the uniformizing coordinate in [4].

2.5. RVT Codes. We observed in [6] that there are only three critical planes within each distribution
∆i. The tangent space to the fiber is called the vertical plane; the other two arise as prolongations of
vertical planes and are called tangency planes. In the most general setting, a tangency hyperplane is any
hyperplane with nontrivial intersection with the vertical hyperplane. In our setting, we have the following
characterization.

Definition 3. Let q ∈M i.

(1) The vertical plane V (q) is the critical plane δ0i (q) = TqFi(q). In KR-coordinates, V (q) = span{ ∂
∂ui

, ∂
∂vi
}.

It is given projectively by [dfi : dui : dvi] = [0 : a : b] for a, b ∈ R.
(2) The plane T1(q) is the unique critical plane in ∆i which intersects span{ ∂

∂vi
}. It is given projectively

by [dfi : dui : dvi] = [a : 0 : b] for a, b ∈ R.
4



L1

L2

L3

T1

T2

V

Figure 1. The three critical planes V, T1, and T2, and their intersections, the distinguished
lines L1, L2, and L3.

(3) The plane T2(q) is the unique critical plane in ∆i which does not intersect span{ ∂
∂vi
}. It is given

projectively by [dfi : dui : dvi] = [a : b : 0] for a, b ∈ R.
(4) The distinguished lines Lj(q) for j = 1, 2, 3 are given by:

(i) L1 = V ∩ T1
(ii) L2 = T1 ∩ T2

(iii) L3 = V ∩ T2
See Figure 1.

In this definition, we often drop the explicit dependence on q when the context is clear. Also, in homoge-
neous coordinates, we cannot have a and b both zero, and we will usually assume without loss of generality
that a 6= 0. Finally, we clarify the terminology. Here V (q) is a linear subspace of ∆i(q) ⊂ TqM

i. When
working in homogeneous coordinates, we are identifying this plane with PV (q) ⊂ P∆i(q) ⊂M i+1. Similarly
for the other planes and lines in this definition. Note again that this definition has analogue in [23].

Now a point pi+1 = (pi, li) is assigned a letter from {R, V, T1, T2, L1, L2, L3} according to whether li lies
in one of the critical planes or distinguished lines given in Definition 3. Here, the lines Lj take precedence,
so li lying in L3 is assigned the letter L3, even though it also lies in both V and T2. If li does not lie in any
of these, then it is regular (see above) and assigned the letter R. If li is assigned the letter α, then we say
that pi+1 is an α point. Note that in [6], the letters T2, L2, and L3 were unknown, and the notation was
T = T1 and L = L1. All letters besides R are called critical letters.

Definition 4. The RVT code of a point p ∈Mk is a word ω = ω1ω2 . . . ωk in the letters {R, V, T1, T2, L1, L2, L3},
where ωi = α if πk

i (p) is an α point.

Example 1. Suppose p3 ∈ M3 has RVT code ω = RV L1. This means that p3 = (p2, l2) with l2 = L1(p2),
and p2 = (p1, l1) with l1 ⊂ V (p1). Every direction in ∆1 is regular, so the leading letter R yields no
information.

For convenience, sometimes we will also denote by ω the set of all points with RVT code ω. For example,
we may write p ∈ RV L1T2 to signify that p has RVT code RV L1T2.
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Table 2. Critical Hyperplane Configurations

Last letter in RVT code of p ∈Mk Critical planes appearing in ∆k(p)
R V

V or T1 V and T1
T2 V and T2

L1, L2, or L3 V, T1, and T2

Figure 2. Critical plane configurations that can appear in the distribution above an R
point (top left), a V or T1 point (top right), a T2 point (bottom left), and an Lj point
(bottom right).

This coding provides a coarse stratification of points in the Monster/Semple tower. Recall that finite jets
of diffeomorphisms act on the tower. Points which lie in the same orbit must have the same RVT code.
However, there may exist multiple orbits within the same RVT strata. For details, see [4] or [19].

3. The Critical Hyperplane Method

3.1. Configurations. This method relies on the non-trivial fact that certain critical planes appear over
certain points, while other may not. In particular, there are four possible configurations over a point
p ∈ Mk; these are shown in Figure 2. We will show how each configuration is possible only if p belongs to
certain RVT classes. Specifically, we have Table 2, which is effectively equivalent to Theorem 2. Note that
saying that p is an α point is the same as saying that α is the last letter in the RVT code for p.

The remainder of this paper will be dedicated to explaining why these possibilities are exhaustive.

3.2. The Method. We now describe the explicit method from which we derive all our results. This will
be applied to specific examples shortly. The critical hyperplane method was implicit in parts of [15], made
explicit in [6], exploited for the classification problem in [4], and is perfected here. This gives a blueprint for
characterizing all Baby Monsters and determining all spelling rules for the Rn tower for any n.

Begin with an RVT code ω of a point p ∈Mk. We wish to understand which critical letters can be added
to the end of the code (one can always trivially add the letter R). In order to do so, we must understand
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Table 3. Summary of Example 2: RV L1

Level i Coordinates on M i P∆i−1 = F i coords. Critical planes in ∆i RVT code of pi

0 (x, y, z) n/a none n/a
1 (x, y, z, u1, v1)

u1 = dy
dx , v1 = dz

dx

[dx : dy : dz] V (p1) = δ01 p1 = (p0, l0) ∈ R
l0 ⊂ ∆0 = Tp0M

0

2 (x, y, z, u1, v1, u2, v2)
u2 = dx

du1
, v2 = dv1

du1

[dx : du1 : dv1] V (p2) = δ02 ,
T1(p2) = δ11

p2 = (p1, l1) ∈ RV
l1 ⊂ V (p1) ⊂ ∆1

3 (x, y, z, u1, v1, u2, v3, u3, v3)
u3 = du1

dv2
, v3 = du2

dv2

[du1 : du2 : dv2] V (p3) = δ03 ,
T1(p3) = δ12 ,
T2(p3) = δ21

p3 = (p2, l2) ∈ RV L1

l2 = L1(p2) ⊂ ∆2

which critical planes lie above p. Since critical planes live within Baby Monsters, we must determine which
Baby Monsters are present, and for those which are, we seek to find the levels at which they were born.

We first determine the local KR-coordinate chart containing p. We can then describe the distribution
∆k(p) in coordinates. We then choose a critical plane V, T1, or T2, write it in coordinates as in Definition 3,
and trace the coordinate representations backwards, projecting down to lower levels of the tower, one at a
time.

If at some level i we find that both fiber coordinates ui and vi are non-vanishing, then our critical plane
must arise as the prolongation of the vertical plane Vi. Our critical plane therefore lives in the Baby Monster
born at level i, and is equal to δki (p). This would confirm that the critical plane we chose indeed appears in
∆k(p).

If, however, we reach the base without finding such a Baby Monster, then the plane we chose cannot
exist in ∆k(p). We can shorten the procedure of tracing each plane back to the base by using previously
established configuration possibilities and proceeding inductively.

While this is not an algorithm in the strictest sense, it can theoretically determine which configurations
are possible above any given point. As one might suspect, this can at times become extremely tedious, and
would not be particularly enlightening for the reader. For this reason, we will focus the remainder of the
paper on a few specific examples to demonstrate the efficacy of the method for determining spelling rules,
while skipping some of the routine verification that was required to complete our results.

It is obvious that the vertical plane V appears above every point – it is just the tangent space to the fiber.
So in the method just described, we need only focus on whether or not T1 and T2 exist (here, since we are
concerned with the R3-tower – one immediately sees how this method generalizes to the Rn-tower). Some
of our results here (those needed for the proof of Theorem 2) are summarized near the end of the paper in
Table 4. We will prove some of these relations here – the rest are obtained by identical methods.

Example 2 (RV L1). We continue investigating the case begun in Example 1. Suppose p3 ∈ M3 has RVT
code ω = RV L1.

Level 1. Begin with the global coframe {dx, dy, dz} for ∆0 = TR3. Our chart will be centered at p1 =
(p0, l0) ∈ M1 where p0 = (0, 0, 0). Introduce affine fiber coordinates [dx : dy : dz] on F1(p1). Without loss

of generality, assume dx|l0 6= 0. Then [dx : dy : dz] = [1 : dy
dx : dz

dx ]. Now let

u1 =
dy

dx
, v1 =

dz

dx

so that

∆1(p1) = {dy − u1dx = 0, dz − v1dx = 0}.

Level 2. Since l1 ⊂ V (p1) = span{ ∂
∂u1

, ∂
∂v1
}, we know l1 = span{a ∂

∂u1
+ b ∂

∂v1
} with a, b not both zero.

Without loss of generality, assume a 6= 0. Then near this point we have [dx : du1 : dv1] = [ dx
du1

: 1 : dv1

du1
].

This yields the affine coordinates

u2 =
dx

du1
, v2 =

dv1
du1
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Figure 3. Critical plane configuration over p3 ∈ RV L1. The left side shows the birth of
T1(p3) = δ12(p3) as the first prolongation of the vertical plane at level 2. The right side
shows the birth of T2(p3) = δ21(p3) as the second prolongation of the vertical plane at level
1. These two Baby Monsters meet in ∆3, and their intersection is the distinguished line
L2(p3). See Example 2.

so that
∆2(p2) = {dy − u1dx = 0, dz − v1dx = 0, dx− u2du1 = 0, dv1 − v2du2 = 0}.

Level 3. Now l2 = L1(p3) = V (p2) ∩ T1(p3), so we want coordinate representations of the V and T1 planes
in ∆2(p2). According to Definition 3, V (p2) is given by du1 = 0 and T1(p2) is given by du2 = 0, so we have
du1|l2 = 0 and du2|l2 = 0. This forces our coordinates near p3 to have the form [du1 : du2 : dv2] = [du1

dv2
:

du2

dv2
: 1]. This yields the affine coordinates

u3 =
du1
dv2

, v3 =
du2
dv2

so that

∆3(p3) = {dy − u1dx = 0, dz − v1dx = 0, dx− u2du1 = 0,

dv1 − v2du2 = 0, du1 − u3dv2 = 0, du2 − v3dv2 = 0}.
This completes the first step of the process, as we have determined the local KR-coordinates around p3

and described the distribution ∆3(p3) in these coordinates. Note that here p3 = (0, 0, 0, 0, 0, 0, 0, 0, 0).

Appearance of T1. We now determine which of the critical planes T1 and T2 lie above p3 in ∆3(p3), which is
coframed1 by [dv2 : du3 : dv3]. First consider T1, given by [a : 0 : b] with a 6= 0. We assume for now that it
exists within some Baby Monster, and we will either find this Baby Monster or derive a contradiction. Since

1Technically, this coframes the projectivized space. But as we often identify ∆k(p) ⊆ TpMk with P∆k(p) ⊆ Mk+1, this

abuse of notation is convenient and should not cause confusion.
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Figure 4. Critical plane configuration over p4 ∈ RV L1T2. This shows the birth of T2(p4) =
δ31(p4) as the third prolongation of the vertical plane at level 1. See Example 3.

[dv2 : du3 : dv3] = [a : 0 : b] here with a 6= 0, we see that u3 is identically zero on the Baby Monster, while
v2 and v3 are not. Now, since ∆2 is coframed by [du1 : du2 : dv2] near p2, and since u3 = du1

dv2
and v3 = du2

dv2
,

this forces the Baby Monster to have the form [du1 : du2 : dv2] = [0 : c : d]. Since this is the form of a
vertical plane, we can stop and conclude that T1(p3) exists, and lies inside the Baby Monster born at level
2. That is, the plane T1(p3) = δ12 , which is the first prolongation of the tangent space to the fiber F2(p2).

Appearance of T2. Next, we repeat this process for T2, given by [a : b : 0] with a 6= 0. We assume for now
that it exists within some Baby Monster, and we will either find this Baby Monster or derive a contradiction.
Since [dv2 : du3 : dv3] = [a : b : 0] here with a 6= 0, we see that v3 is identically zero on the Baby Monster,
while v2 and u3 are not. Now, since ∆2 is coframed by [du1 : du2 : dv2] near p2, and since u3 = du1

dv2
and

v3 = du2

dv2
, this forces the Baby Monster to have the form [du1 : du2 : dv2] = [c : 0 : d]. Note that unlike the

previous case, this is not vertical, so we must continue searching another level down. Since ∆1 is coframed
by [dx : du1 : dv1] near p1, and since u2 = dx

du1
and v2 = dv1

du1
, this forces the Baby Monster to have the form

[dx : du1 : dv1] = [0 : e : f ]. Since this is the form of a vertical plane, we can stop and conclude that T2(p3)
exists, and lies inside the Baby Monster born at level 1. That is, the plane T2(p3) = δ21 , which is the second
prolongation of the tangent space to the fiber F1(p1).

Summary. We conclude that both planes T1 and T2 occur above a point with RVT code ω = RV L1, so that
both codes RV L1T1 and RV L1T2 are admissible and realized (assuming temporarily that ω is admissible).
Compare this result with Theorem 2 and Figure 2. Also see Figure 3 for an illustration of this situation. We
summarize the results of this example in Table 3.
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Example 3 (RV L1T2). We continue the work from the previous example, and consider the case of p4 ∈M4

with RVT code RV L1T2. This is admissible by the preceding computations, and indeed, all results from
that example hold here. As the general techniques were made explicit there, we omit some tiresome details
here.

First, one finds affine coordinates u4 = du3

dv2
and v4 = dv3

dv2
for the fiber F4(p4). Next, recall that ∆3(p3),

is coframed by [dv2 : du3 : dv3], and T2(p3) locally satisfies dv3 = 0, with dv2 non-vanishing and du3 not
identically zero. This implies that v4 = 0, but u4 is non-zero. (If u4(p4) were zero, then there would be no
vertical component, and l3 would lie in a regular direction instead of in T2.)

Second, we show that T2 does occur in ∆4(p4). This computation is nearly identical to those presented
in the previous example, so we omit it. One finds that T2(p4) = δ31 .

Finally, we show that T1 cannot occur in ∆4(p4). If it did, it would have the form [dv2 : du4 : dv4] = [a :
0 : b] with a 6= 0. But p4 = (p3, l3) with l3 ⊂ δ21 = T2(p3). This implies du4|l3 = 0, so u4(p4) = 0, which
contradicts the fact that u4 is non-zero in a neighborhood of p4.

We have shown that the T2 critical plane occurs, but T1 does not, in ∆4(p4) for p4 in the class RV L1T2.
We conclude that the code RV L1T2 can be amended with letters R, V, T2, and L3, but not with T1, L1, or
L2. Compare with Theorem 2, Figure 2, and the second row of Table 4. Also see Figure 4 for an illustration
of this situation.

4. Spelling Rules

In this section we will outline the proof of Theorem 2 from the Introduction, which we restate here.

Theorem 2 (Spelling Rules). In the Semple tower with base R3, there exists at point p with RVT code ω
if and only if the word ω satisfies:

(1) Every word must begin with R
(2) R cannot be followed by Ti or Lj

(3) V cannot be followed by T2, L2, or L3. Same for T1
(4) T2 cannot be followed by T1, L1, or L2

(5) L1, L2, and L3 can be followed by any letter.

Let us begin with an overview of the method of proof. The first two rules are well known and appear in
[6] and [3]. Rule (3) can be checked by direct calculation; this is tedious but straightforward and we omit
the computation here. The same can be said for the part of rule (5) concerning the letter L1. The technique
is illustrated by examples in [4] and the three examples above. For example, one finds that for any point
p ∈ λL1, the plane T1(p) is obtained by prolonging the vertical plane from one level below. In other words,
T1(p) = δ1k−1. Similarly, the plane T2(p) is the prolongation of the T1 plane from one level below. This is
independent of the code λ.

To prove the remaining rules, (4) and most of (5), we proceed by induction on the number of letters T2, L2,
or L3 appearing in the code. This proof is more delicate. Set S = {T2, L2, L3}. For the base case, we must
prove that the spelling rules hold for an RVT code ω containing only one letter α ∈ S. For the inductive step,
we must prove that the spelling rules hold for an arbitrary code ω, using the inductive hypothesis that the
rules hold for any code containing fewer letters α ∈ S. In both steps, we assume without loss of generality
that the letter α appears at the end of the code in question.

Unfortunately (but perhaps unsurprisingly given the examples above), this method requires investigating
a large number of specific cases, as well as a considerable number of tedious calculations. We therefore spare
the reader details of all cases, and the lengthy but routine computations which are required to prove each
spelling rule rigorously. Instead, we will focus in detail on one particular rule: the fourth. We hope that this
approach will yield sufficient detail to introduce the mechanics of the method to the reader, while sparing
the reader dozens of pages of nearly identical calculations. We chose these particular cases as they exhibit
generally typical behavior, but with a few of the subtleties which necessitate special care and patience.

4.1. Base Case. We assume rules (1) – (3) have been proved. Here we will provide details for rule (4); the
remaining proofs are very similar. To this end, let ω be an RVT code of length k, ending with the letter
T2. We will show that codes ωR,ωV, ωT2, and ωL3 do occur at level k + 1, while ωT1, ωL1, and ωL2 are
impossible. We prove this by induction on the number of letters α ∈ S = {T2, L2, L3} appearing in ω.
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We first prove the base case. Assume ω = λT2, where λ does not contain any letter from S. We will show
that rule (4) holds for this ω. We prove this by considering the potential letters preceding T2. By rules (2)
and (3), T2 cannot be preceded by R or V or T1. Since we have assumed that λ contains no letters from
S, we know T2 cannot be preceded by T2, L2, or L3. We therefore consider the only remaining possibility:
T2 is preceded by L1. Note that for convenience we will use λ to denote any sub-code of ω, regardless of its
length.

So we proceed assuming our code has the form ω = λL1T2, where λ contains no elements from S. Thus,
the predecessor of L1 can only be V, T1, or L1. We have three possible cases.

Case 1: ω = λV Tm
1 L1T2,m ≥ 0. Assume our code has length k and is of the form ω = λV Tm

1 L1T2 with
m ≥ 0. If m = 0, then V precedes L1; if m > 1, then T1 does. The third possibility, where L1 precedes L1,
is treated as a separate case below.

In fact, we can assume without loss of generality that ω = RV Tm
1 L1T2. This is valid because the plane

T2(pk) is the (possibly multi-step) prolongation of some vertical plane from a lower level. That is, T2(pk) = δji
for some Baby Monster, and this subtower could not have been born at a level below the last letter V in the
RVT code.

Now consider ω = RV Tm
1 L1T2. We have k = m+ 4. We wish to show that the spelling rules hold for ω.

This is to show that the codes ωα are realized for α = R, V, T2, L3, but are impossible for α = T1, L1, L2.
Now there are regular and vertical directions in each distribution plane, so it is clear that α = R or V are
possible. Recall from Definition 3 that L1 = V ∩T1, L2 = T1 ∩T2, and L3 = V ∩T2. It is therefore sufficient
to simply show that α = T2 is possible, while α = T1 is not.

The proof here is nearly identical to that provided in Example 3. In fact, that example gives precisely
the case where m = 0. Recall that in that case, T1 could not appear and T2(p4) = δ31 . For m > 1, we
easily verify that, again T1 cannot appear, and T2(pm+4) = δm+3

1 . The key observation is the following.
The vertical plane V (p1) is coframed by [dx : du1 : dv1] = [a : b : 0] with a 6= 0. The prolongation of
this plane is T1(p2) = δ11 , which is coframed by [du1 : du2 : dv2] = [a : 0 : b] with a 6= 0. For m > 1, we
continue this process and find that the mth prolongation of V (p1) is T1(pm+1) = δm1 , which is coframed by
[du1 : dum+1 : dvm+1] = [a : 0 : b] with a 6= 0. The rest of the steps are the same as in Example 3.

Case 2: ω = λL1T
m
1 L1T2,m ≥ 1. This case is nearly identical to the previous. Here, one finds again that

the vertical plane in ∆k−m−3 prolongs m+ 3 times to give the plane T2(pk).

Case 3: ω = λL1L1T2. The method here is the same as in Case 1, so we will omit some of the readily
checked details. Again suppose the length of ω is k. Then ∆k is coframed by [dfk : duk : dvk], and T2(pk)
would have the form [dfk : duk : dvk] = [a : b : 0] with a 6= 0 and dfk = dvk−2. Its projection in ∆k−1 will
have the form [dfk−1 : duk−1 : dvk−1] = [a : b : 0] with a 6= 0 and dfk−1 = dvk−2. Its projection in ∆k−2 will
have the form [dfk−2 : duk−2 : dvk−2] = [a : 0 : b] with a 6= 0 and dfk−2 = dvk−3. Finally, its projection in
∆k−3 will have the form [dfk−3 : duk−3 : dvk−3] = [0 : a : b] with a 6= 0. At this point, we can see that this
is the vertical plane V (pk−3), so we find that T2(pk) does indeed exist in ∆k, and that it is equal to δ3k−3.

A computation similar to this one and those found in Example 3 shows that T1(pk) cannot exist. In short,
one repeats this computation beginning with T1(pk) of the form [dfk : duk : dvk] = [a : 0 : b] with a 6= 0, and
at some point a contradiction is obtained in that some coordinate is forced to be both zero and nonzero.

This establishes the base case for the proof of rule (4) by induction. We showed that rule (4) holds for
any RVT code containing a single member of S (which, in the context of rule (4), must naturally be the
letter T2.) These three cases comprise the top three rows in Table 4. The remaining cases are displayed as
the lower six rows in Table 4; their proofs are similar.

4.2. Inductive Step. We now take ω to be an arbitrary RVT code of length k. We assume that ω ends
with some letter from S, and we will show that the spelling rules hold for ω. Our inductive hypothesis states
that the spelling rules hold for any code which contains fewer letters from S than ω does.

As above, we will focus on rule (4), so our code should end with the letter T2. So we have ω = λT2 and
our inductive hypothesis allows the assumption that λ satisfies the spelling rules. We wish to show that, at
level k + 1, the codes ωα are realized for α = R, V, T2, L3, but are impossible for α = T1, L1, L2. Now there
are regular and vertical directions in each distribution plane, so it is clear that α = R or V are possible.

11



Table 4. Base Cases of Inductive Proof

RVT code of pk ∈Mk T1(pk) T2(pk)

λV Tm
1 L1T2 for m ≥ 0 None δm+3

k−m−3(pk)

λL1T
m
1 L1T2 for m ≥ 1 None δm+3

k−m−3(pk)
λL1L1T2 None δ3k−3(pk)

λV Tm
1 L1L2 for m ≥ 0 δ2k−2(pk) δm+3

k−m−3(pk)

λL1T
m
1 L1L2 for m ≥ 1 δ2k−2(pk) δm+3

k−m−3(pk)
λL1L1L2 δ2k−2(pk) δ3k−3(pk)

λV Tm
1 L1L3 for m ≥ 0 δ1k−1(pk) δm+3

k−m−3(pk)

λL1T
m
1 L1L3 for m ≥ 1 δ1k−1(pk) δm+3

k−m−3(pk)
λL1L1L3 δ1k−1(pk) δ3k−3(pk)

Recall from Definition 3 that L1 = V ∩T1, L2 = T1∩T2, and L3 = V ∩T2. It is therefore sufficient to simply
show that α = T2 is possible, while α = T1 is not.

Now since λ clearly has (exactly one) fewer letters from S than ω does, it must obey the spelling rules by
assumption. So T2 must be preceded by either T2, L1, L2, or L3. There are four cases here, but we will give
details for just the first and second. The other two are nearly identical.

Case 1: ω = λT2T2. Suppose pk ∈ Mk has RVT code ω = λT2T2. From the discussion above, it suffices to
prove that T2 appears in ∆k, while T1 does not. Now the distribution ∆k is coframed by [dfk : duk : dvk].
Two levels down, ∆k−2 is coframed by [dfk−2 : duk−2 : dvk−2], but since pk−1 ∈ λT2, it must have the form
pk−1 = (pk−2, lk−2) with lk−2 ⊆ T2(pk−2). We must therefore have T2(pk−2) coframed by

[dfk−2 : duk−2 : dvk−2] =

[
1 :

duk−2
dfk−2

:
dvk−2
dfk−2

]
= [1 : uk−1 : vk−1]

where vk−1 = 0 and uk−1 is not identically zero. Moreover, we see that dfk−1 = dfk−2.
Since pk ∈ λT2T2, the same argument shows that T2(pk−1) is coframed by

[dfk−2 : duk−1 : dvk−1] =

[
1 :

duk−1
dfk−2

:
dvk−1
dfk−2

]
= [1 : uk : vk]

where vk = 0 and uk is not identically zero. Moreover, we see that dfk = dfk−1 = dfk−2.
Now as an ansatz, suppose T2(pk) indeed appears in ∆k. Then it would have the form [dfk−2 : duk : dvk] =

[a : b : 0] with a 6= 0. Its projection one level down would have the form [dfk−2 : duk−1 : dvk−1] = [a : b : 0]
with a 6= 0. We recognize this as T2(pk−1), which we know exists in ∆k−1. Therefore T2(pk) indeed exists
as it is the prolongation of T2(pk−1), and our ansatz is justified.

Finally, assume for sake of contradiction that T1(pk) appears in ∆k. It would have the form [dfk−2 : duk :
dvk] = [a : 0 : b] with a 6= 0. Its projection one level down would have the form [dfk−2 : duk−1 : dvk−1] =
[a : 0 : b] with a 6= 0. This forces duk−1 = 0. But we saw above that a local fiber coordinate at pk−1 is

uk = duk−1

dfk−2
, and uk is not identically zero. This contradiction disproves the existence of T1(pk) in ∆k.

Case 2: ω = λL1T2. Suppose pk ∈ Mk has RVT code ω = λL1T2. From the discussion above, it suffices to
prove that T2 appears in ∆k, while T1 does not. Now the distribution ∆k is coframed by [dfk : duk : dvk].
Two levels down, ∆k−2 is coframed by [dfk−2 : duk−2 : dvk−2], but since pk−1 ∈ λL1, it must have the form
pk−1 = (pk−2, lk−2) with lk−2 = L1(pk−2). We must therefore have L2(pk−2) coframed by

[dfk−2 : duk−2 : dvk−2] =

[
dfk−2
dvk−2

:
duk−2
dvk−2

: 1

]
= [uk−1 : vk−1 : 1].

Moreover, we see that dfk−1 = dvk−2.
Since pk ∈ λT2T2, the we can similarly see that T2(pk−1) is coframed by

[dvk−2 : duk−1 : dvk−1] =

[
1 :

duk−1
dvk−2

:
dvk−1
dvk−2

]
= [1 : uk : vk]

where vk = 0 and uk is not identically zero. Moreover, we see that dfk = dvk−2.
12



Now as an ansatz, suppose T2(pk) indeed appears in ∆k. Then it would have the form [dvk−2 : duk : dvk] =
[a : b : 0] with a 6= 0. Its projection one level down would have the form [dvk−2 : duk−1 : dvk−1] = [a : b : 0]
with a 6= 0. We recognize this as T2(pk−1), which we know exists in ∆k−1. Therefore T2(pk) indeed exists
as it is the prolongation of T2(pk−1), and our ansatz is justified.

Finally, assume for sake of contradiction that T1(pk) appears in ∆k. It would have the form [dvk−2 : duk :
dvk] = [a : 0 : b] with a 6= 0. Its projection one level down would have the form [dvk−2 : duk−1 : dvk−1] =
[a : 0 : b] with a 6= 0. This forces duk−1 = 0. But we saw above that a local fiber coordinate at pk−1 is

uk = duk−1

dvk−2
, and uk is not identically zero. This contradiction disproves the existence of T1(pk) in ∆k.

5. Conclusion

Here we have established a coarse stratification of the Monster tower with base R3, though the methodology
can be extended to more general bases. The number of letters needed for our code increases exponentially
with n: there are 2n−1 possible configurations when our base manifold is Rn. The number of orbits, which is
proportional to the number of words in those 2n letters, will also grow exponentially. The thorough extension
of the classification theory to the general case remains open. Once the spelling rules are understood, one
can propose recursive relations that compute the number of words at each level and thus determine a lower
bound on the number of geometric orbits. Such recursive relations have not yet been established.

Note that the phenomenon of subtowers, or Baby Monsters, lead to refinements of the code (specific to
the tangency directions) which have not been entirely explored here. One should account for the birth and
death of the Baby Monsters in the process of labelling a critical orbit. Moreover, Baby Monsters born at
different levels can also intersect, and the dual graph corresponding to their relative configurations provides
further geometric invariants leading to more precise classification results. This is work in progress.

It also remains to investigate the correspondence between finite jets of spatial curves and normal forms of
special multi-flags. One should explore the depth of the correspondence between Arnold’s A-D-E classification
([1]) and the listing of normal forms of Goursat multi-flags.

Note that most normal forms in Arnold’s list correspond to curves in three dimensions. There are very
few or no stable singularities in four or more dimensions. This may have implications in the computation of
normal forms of special k-flags for k ≥ 3. The present contribution concerns 2-flags only.
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