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Abstract. We study the possibility of realizing exotic smooth structures on
punctured simply connected 4-manifolds as leaves of a codimension 1 foliation
on a compact manifold. In particular, we show the existence of a continuum of
smooth open 4-manifolds which are not diffeomorphic to any leaf of a codimen-
sion 1 transversely analytic foliation on a compact manifold. These examples
include some exotic R

4’s and exotic cylinders S3
× R.

Introduction

The stunning results of Donaldson [10] and Freedman [11] provided the existence
of exotic smooth structures on R

4, which is known to be the unique euclidean space
with this property. This is in fact also true [3] for an open 4-manifold with a
collarable end. The fact that these structures can arise in 4-dimensional manifolds
has implications for physics (see e.g. [1, 22]), i.e., what if our space-time carries
an exotic structure? Since the exotic family was discovered in the 1980s, nobody
has been able to find an explicit and useful exotic atlas. It is worthy of interest to
obtain alternative explicit descriptions of these exotica.

An open manifold which is realizable as a leaf of a foliation in a compact manifold
must satisfy some restrictions. Since the ambient is compact, an open manifold has
to accumulate somewhere, and this induces recurrences and “some periodicity” on
its ends.

Before reviewing the history of realizability of open manifolds as leaves, we now
state our main results. Let Z be the set of open topological 4-manifolds (up to
homeomorphism) obtained by removing a finite non-zero number of points from
a closed, connected, simply connected 4-manifold. In Section 3 we shall define a
class Y of smooth manifolds (up to diffeomorphism), each with at least one exotic
end, whose underlying topological manifolds belong to Z. To give some idea of Y,
we remark that every manifold in Z that has at least two ends, or is obtained by
removing a single point from a smooth closed manifold, is the underlying topological
manifold of an uncountable family of diffeomorphically distinct manifolds in Y.

Theorem 1. If Y ∈ Y is a leaf in a C1,0 codimension one foliation of a closed
5-manifold, then it is a proper leaf and each connected component of the union of
the leaves diffeomorphic to Y fibers over the circle with the leaves as fibers.

Theorem 2. For any manifold Y ∈ Y there exists an uncountable subset YY ⊂
Y of manifolds homeomorphic to Y that are not diffeomorphic to any leaf of a
transversely analytic codimension 1 foliation of a compact manifold.

The following result of independent interest, which uses the theory of levels and
depth described in Section 3, will be used in the proof of Theorem 2.
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Theorem 3. Every open manifold has at most countably many smooth structures
(up to diffeomorphism) that can be leaves of finite depth in a codimension one
transversely C1+Lip foliation of a compact manifold.

Remark that in this theorem, there is no restriction in the dimension of the
foliation; it can be greater than 4.

Next we review some of the history of leaves and non-leaves. It was shown by
J. Cantwell and L. Conlon [7] that every open surface is homeomorphic (in fact,
diffeomorphic) to a leaf of a foliation on each closed 3-manifold. The first examples
of topological non-leaves were due to E. Ghys [15] and T. Inaba, T. Nishimori,
M. Takamura, N. Tsuchiya [20]; these are highly topologically non-periodic open
3-manifolds which cannot be homeomorphic to leaves in a codimension 1 foliation
in a compact manifold. Years later, O. Attie and S. Hurder [2], in a deep analysis
of the question, found simply connected examples of non-leaves, non-leaves which
are homotopy equivalent to leaves and even a Riemannian manifold which is not
quasi-isometric to a leaf in arbitrary codimension. This final example follows the
line of the work of A. Phillips and D. Sullivan [24] and T. Januszkiewicz [21]. We
remark that these later examples are 6-dimensional.

C.L. Taubes [27] showed that the smooth structure of some of the exotic R
4’s

is, in some sense, non-periodic at infinity, and this leads to the existence of un-
countably many non-diffeomorphic smooth structures on R

4. It is an open problem
whether an exotic R

4—and, by extension, any given open manifold with a similar
exotic end smooth structure—can be diffeomorphic to a leaf of a foliation on a
compact manifold. By a simple cardinality argument, most exotic R

4’s cannot be
covering spaces of closed smooth 4-manifolds by smooth covering maps since the
diffeomorphism classes of smooth closed manifolds are at most countable. A direct
proof can be given for some classes of exotic R4’s [28]. All these results motivated a
folklore conjecture in foliation theory suggesting that these exotic structures cannot
occur in leaves of a foliation in a compact manifold.

The main difference between some exotic R
4’s (called large) and the standard

R
4 is the fact that they cannot embed smoothly in a standard R

4. An important
property for a large exotic R

4 is to describe what are the simplest spin manifolds
(in the sense of the second Betti number) in which it can be embedded; this is
measured by the invariant defined by L. Taylor [28], which provided the first direct
tool to show that some exotic R

4’s cannot be non-trivial covering spaces. We
can subdivide large exotic R

4 in two classes: those that can be embedded in spin
closed 4-manifolds with hyperbolic intersection form and those which cannot; our
arguments differ slightly between these two families.

These particular exotica have a good control on the end structure and we can
use them to perturb the standard end of a punctured smooth 4-manifold. We adapt
Ghys’ procedure in [15] to show some necessary conditions for such structures to
be leaves of a codimension 1 foliation on a compact manifold. Precisely, Theorem 1
shows that if one of these manifolds is a leaf, it must be a proper leaf, and the union
of leaves diffeomorphic to it is a saturated open set such that each of its connected
components fibers over the circle. In Theorem 2, we complete this analysis in
the case of analytic foliations (those where the transverse coordinate changes are
analytic maps), by using the theory of levels [5], which gives some control of the
end-recurrences of the leaves, and the result due to G. Hector showing that, in the
case of an exceptional local minimal set, the stabilizer group of any gap is cyclic.
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The paper is organized as follows:

• The first section is devoted to exotic structures on open 4-manifolds, partic-
ularly in R

4. This is in fact a brief exposition of the results in [4, 14, 16, 28].
Here we define the particular exotic structures considered on R

4 and show
some of their properties.

• In the second section we prove Theorem 1 and give necessary conditions for
some exotic punctured simply connected 4-manifolds to be diffeomorphic
to leaves, following Ghys’ method of proof [15].

• In the third section we describe the theory of levels and use it to prove The-
orem 3 and Theorem 3.1, showing the existence of an uncountable family
of exotic manifolds which cannot be leaves at finite depth.

• In the fourth section we consider the analytic case and prove Theorem 2
which shows the existence of an uncountable family of exotic structures
which are non-leaves.

• The last section includes some last remarks and open questions.

We would like to thank G. Hector, R. Gompf, and L. Taylor for their help in
preparing this paper.

1. Exotic structures on R
4

In this section we construct a continuum of exotic structures in R
4 which are

non-periodic by Taubes’ work. Later we shall need a better control of this struc-
ture, which is provided by the invariant defined by L. Taylor [28]. This introduction
begins with a brief reminder of some known facts in 4-dimensional differential topol-
ogy.

Theorem 1.1 (Freedman [11]). Two simply connected closed 4-manifolds are home-
omorphic if and only if their intersection forms are isomorphic and have the same
modulo 2 Kirby-Siebemann invariant. In particular, simply connected smooth closed
4-manifolds are homeomorphic if and only if their intersection forms are isomor-
phic.

Theorem 1.2 (Donaldson [10]). If a smooth closed simply connected 4-manifold
has a definite intersection form then it is equivalent to a diagonal form.

Definite symmetric bilinear unimodular forms are not classified and it is known
that the number of equivalence classes grows at least exponentially with the range.
Indefinite unimodular forms are classified [26]: two indefinite forms are isomorphic if
they have the same range, signature, and parity. There are canonical representatives
for the indefinite forms; in the odd case the form is diagonal and in the even case
H2(M,Z) splits into invariant subspaces where the intersection form is either E8

or H . These canonical representatives are denoted as usual with the notation
⊕m[+1]⊕ n[−1] for the odd case and ⊕±mE8 ⊕ nH for the even one.
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For each symmetric bilinear unimodular form there exists at least one topological
simply connected closed 4-manifold with an isomorphic intersection form. But this
is no longer true for the smooth case, as Donaldson’s theorem asserts. It is an open
problem what unimodular forms can be realized in smooth simply connected closed
4-manifolds. It is known that for a smooth simply connected even 4-manifold the
number of “E8 blocks” must be even (Rokhlin’s theorem). It is possible to say
more, as in Furuta’s theorem [13] which will be useful in this section.

Theorem 1.3 (Furuta [13]). If M is a smooth simply connected closed 4-manifold
with an intersection form equivalent to ⊕±2mE8⊕nH and m 6= 0, then n ≥ 2m+1.

Another important tool for this section is the “end sum” construction. For open
manifolds this is analogous to the connected sum of closed manifolds. Given two
open smooth manifoldsM and N we choose two smooth proper paths c1 : [0,∞) →
M and c2 : [0,∞) → N , each of them defining one end inM andN respectively. Let
V1 and V2 be tubular neighborhoods of c1([0,∞)) and c2([0,∞)). The boundaries

of these neighborhoods are clearly diffeomorphic to R
3 and we can do a smooth

sum by identifying these boundaries so as to respect the orientations. This will
be called the end sum of M and N associated to c1 and c2, and it is denoted by
M♮N =M \ V1

⋃

∂ N \ V2. In the case where N and M are both homeomorphic to

R
4, the smooth structure of M♮N only depends in the isotopy class of the paths c1

and c2. End sum was the first technique which made it possible to find infinitely
many exotic structures on R

4 [16] and it is an important tool for dealing with the
problem of generating infinitely many smooth structures on open 4-manifolds [3, 14].

Let us recall an important theorem of M.H. Freedman which is the main tool to
determine when a manifold is homeomorphic to R

4.

Theorem 1.4 (Freedman [11]). An open 4-manifold is homeomorphic to R
4 if and

only if it is contractible and simply connected at infinity.

Now we describe the construction of an exotic R
4 whose end structure is dif-

feomorphic to the end of a punctured −E8 ⊕ −E8 manifold, as in Taubes’ work
[27].

Let M0 be the K3 Kummer surface. It is known that the intersection form
of M0 can be written as −2E8 ⊕ 3H , where the six elements in H2(M0,Z) span-
ning the summand 3H can be represented by six Casson handles Ci attached to

a 4-dimensional ball B4 inside M0. Let U = int(B4 ∪
⋃6
i=1 Ci) which is clearly

homeomorphic to a punctured #3S2×S2 by Freedman’s theorem 1.1. Let S be the
union of the cores of the Casson handles, which we consider to be inside #3S2×S2.
By theorem 1.4 the manifold R = #3S2 × S2 \ S is homeomorphic to R

4. If this
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R were standard then we could smoothly replace the 3H part in the intersection
form of M0 by a standard ball, so the resulting smooth closed manifold would have
intersection form −2E8, in contradiction to Donaldson’s theorem 1.2, since −2E8

is not isomorphic to a diagonal form. Let K be the compact set in R which is the
bounded component determined by the boundary of a small neighborhood of S.

Notation 1.5. Let ψ : R
4 → R be a homeomorphism. Let us denote Kt =

ψ(D(0, t)), where D(0, t) is the standard closed disk of radius t, and consider the

smooth structure in K̊t induced by R.

We now present a version of Taubes’ theorem which suffices for our purposes.

Definition 1.6 (Periodic end). Let M be an open smooth manifold with one
end homeomorphic to S3 × (0,∞). We say that this end is smoothly periodic if
there exists an unbounded domain V ⊂ M homeomorphic to S3 × (0,∞) and a
diffeomorphism h : V → V such that hn(V ) defines the given end (i.e., {hn(V )} is
a neighborhood base for the end).

Note that this notion of smoothly periodic end is a particular case of admissible
periodic ends considered in [27].

Theorem 1.7 (Taubes [27]). LetM be an open smooth simply connected 4-manifold
with definite intersection form and exactly one end. If the end of M is homeomor-
phic to S3× (0,∞) and smoothly periodic, then the intersection form is isomorphic
to a diagonal form. As a consequence there exists r0 > 0 such that, for any t, s > r0,
t 6= s, Kt is not diffeomorphic to Ks.

Definition 1.8 (Taylor [28]). Let E be an exotic R
4. Let Sp(E) be the set of

closed smooth Spin 4-manifolds N with trivial or hyperbolic intersection form in
which E embeds smoothly. Define bE = ∞ if Sp(E) = ∅, or else:

2bE = min
N∈Sp(E)

{β2(N)} .

Let E(E) be the set of topological embeddings e : D4 → E such that e is smooth
in the neighborhood of some point of the boundary and e(∂D4) is (topologically)

bicollared. Set be = b
e(D̊4)

where e(D̊4) has the smooth structure induced by E.

The Taylor-index of E is defined to be

γ(E) = max
e∈E(E)

{be} .

For a spin manifoldM , the Taylor-index ofM is the supremum of the Taylor-indices
of all the exotic R

4’s embedded in M .

Proposition 1.9 (Proposition 2.2 [28]). Let ei ∈ E(E), i = 1, . . . , k, be pairwise

disjoint topological disks in E. Then there exists e ∈ E(E) such that e(D̊4) is

diffeomorphic to ♮ki=1ei(D̊
4).

Proposition 1.10 (Example 5.6 [28]). We can assume K ∈ E(R) (a topologically
embedded ball with the required properties). Then bK = γ(R) = 3 and, for any

e ∈ E(R) such that e(D4) ∩K = ∅, e(D̊4) is not diffeomorphic to K.

Corollary 1.11 (Taylor). R cannot be a non-trivial covering space of any smooth
manifold.
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Proof. Otherwise there would exist a diffeomorphism acting properly onR, so some
power of this covering map would disconnect K from a diffeomorphic copy of itself,
contradicting the above proposition. �

Proposition 1.12 (Theorem 5.3 [28]). The Taylor-index of ♮nK tends to ∞. In
particular, the existence of infinitely many pairwise disjoint sets diffeomorphic to
K implies that the manifold cannot be embedded in a compact spin manifold with
hyperbolic intersection form. For instance, R∞ = ♮∞i=1R.

Remark 1.13. In Example 5.10 in [28], uncountably many non-diffeomorphic smooth
structures R4 with infinite Taylor index are exhibited. Each element of this family
is end diffeomorphic to K̊t♮R∞ for all sufficiently large t.

On the other hand, R∞ can be a non-trivial covering space of an open manifold.
In fact R∞ admits several free actions (see e.g. [16, 17]); for example, R∞ is
diffeomorphic to the end sum ♮i∈ZR, which admits an obvious free action of Z

whose quotient is R.
Another way to describe the pathologies of large exotic R

4’s is by considering
smooth 3-submanifolds disconnecting large compact sets from the end. The dis-
cussion of the Taylor index above shows that these disconnecting manifolds cannot
be smooth spheres, so invariants associated to these submanifolds give a measure
of the complexity of the exotic structure. This is exactly what is measured by the
engulfing index defined by Ž. Bižaca and R. Gompf [4, 14].

Notation 1.14. Let X be an open manifold with an isolated end e and let K ⊂ X
be a compact set. Let Σ|eK denote a smooth embedded 3-submanifold Σ ofX which
disconnects K from e. This means that X \Σ has two connected components, one
of which contains K and the other of which is a neighborhood of e. It is clear from
basic differential topology theory that for a given K such a Σ does exist. If X has
exactly one end e then we denote Σ|eK by K ⊂ X .

Remark 1.15. Recall that C1 submanifolds are isotopic to smooth (C∞) subman-
ifolds arbitrarily close to them, so in the definition of the complexity it is not
necessary to consider whether the separating submanifold Σ is C1 or smooth.

Definition 1.16 (Engulfing index). Let X be a smooth manifold and let e be an
isolated end of X . The engulfing index of X in the direction of e, denoted by
ce(X), is the number (possibly ∞) given by the following expression:

ce(X) = sup
K⊂X

{ inf
Σ|eK

b1(Σ)} ,

where K runs over the compact sets in X , Σ runs over the embedded smooth closed
3-submanifolds disconnecting K from the end e, and b1(Σ) is the first Betti number
of Σ. When the end being considered is clear from the context (for instance when
there is only one end or only one is not standard) we shall use the notation c(X).

Proposition 1.17. [4, 14] c(♮n1R) > 2n and c(R∞) = ∞.

For the sake of completeness we shall sketch the proof of this proposition. The
proof splits into two parts. First of all the existence of an exotic R

4 with positive
complexity must be shown. Then it is shown that the end sum of these particular
exotica produces exotic R4’s with higher complexity. Thus an infinite end sum will
produce an exotic R

4 with infinite complexity.
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We show that R has complexity greater than 2. We want to show that any
smooth 3-submanifold Σ separating K from the end has first Betti number β1(Σ) >
2. Assume that β1(Σ) ≤ 2.

Let N be the compact 4-manifold bounded by Σ inside R. In the K3 surface
M0 we can obtain a smooth copy of Σ separating the 3H component represented
by S from the −2E8 component, and we let M be the 4-manifold corresponding
to 2E8 bounded by Σ in M0. Then we can identify the boundaries and obtain a
smooth closed manifold Y =M ∪ΣN , which must be spin since all the factors con-
sidered have even intersection forms. Let us consider the Mayer-Vietoris sequence
associated to M and N with rational coefficients:

· · · → H2(Σ)
ϕ

−−−−→ H2(M)⊕H2(N)
ψ

−−−−→ H2(Y ) → H1(Σ) → · · ·

By Poincare duality H2(Σ) ≈ H1(Σ) and they have at most two generators. The
key observation is the fact that H2(M,Σ) = −2E8 (understanding this notation
as the corresponding subspace of H2(M) invariant by −2E8) and H2(N,Σ) = 0.
From the exact homology sequence of the pair (M,Σ)

· · · → H2(Σ)
i∗−−−−→ H2(M)

j∗
−−−−→ H2(M,Σ)

∂
−−−−→ H1(Σ) → · · ·

we see that the homology 2-classes in H2(M) that become zero in H2(M,Σ) come
from 2-classes of H2(Σ). A similar result holds for H2(N). In the Mayer-Vietoris
sequence the image of ψ is generated by H2(M,Σ) = −2E8 and at most two el-
ements in the image of ϕ, since j∗ ◦ i∗H2(Σ) = 0. Thus H2(Y ) consists of the
classes in −2E8, at most two other generators in the image of ψ, and at most two
generators whose images in H1(Σ) are non-zero. Therefore the intersection form of
Y is at most −2E8 ⊕ 2H , with only two copies of H , and this contradicts Furuta’s
theorem. Thus β1(Σ) > 2, so the complexity of R is also greater than 2.

A similar argument applies to ♮ni=1R to show that β1(Σ) > 2n. In this case
we could construct a smooth closed spin manifold with intersection form at best
−2nE8 ⊕ 2nH (the non-optimal case would have less hyperbolics and more E8’s)
which contradicts Furuta’s theorem again. An inductive argument yields the result
for R∞.

Remark 1.18. Remark that the same uncountable family of non-diffeomorphic
structures given in Example 5.10 in [28] have infinite engulfing index.

2. Exotic simply connected smooth 4-manifolds that are leaves

In this section we give necessary conditions for certain exotic simply connected
smooth manifolds to be diffeomorphic to leaves of a codimension 1 foliation in
a compact manifold. As mentioned in the introduction, we define Z to be the
set of open topological 4-manifolds (up to homeomorphism) which are obtained
by removing a finite non-zero number of points from a closed, connected, simply
connected 4-manifold.

Definition 2.1. Let Y be the set of smooth manifolds Y (up to diffeomorphism)
that are homeomorphic to members of Z such that

(1) Y has an end diffeomorphic to the end of a finite end sum ♮ki=1R, to ♮ki=1K̊t

or to K̊t♮R∞ with t > r0 (with the notations of the previous section), and
(2) if H2(Y ) = 0, then Y has only one exotic end and the other ends (if there

are any) are standard.
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(3) In the particular case where Y is homeomorphic to R
4 we only consider

smooth structures with finite Taylor-index.

Example 2.2. If ZY is a simply connected smooth closed 4-manifold that is not
homeomorphic to S4, then Y = ZY#R ∈ Y, since Freedman’s theorem 1.1 shows
that H2(Y ) ≈ H2(ZY ) 6= 0, and Y is homeomorphic but not diffeomorphic to
ZY \ {∗} by Taubes’ work. If ZY = S4 then every non-trivial finite end sum of R
belongs to Y.

The goal of this section is the proof of Theorem 1, which states that if a leaf of
a C1,0 codimension one foliation of a compact manifold is diffeomorphic to Y ∈ Y,
then the leaf is proper and each connected component of the union of all leaves
diffeomorphic to Y fibers over the circle with the leaves as fibers.

Remark 2.3. Regularity C1,0 means that the leaves are tangent to a continuous
hyperplane distribution of codimension 1.

Remark 2.4. It is well-known that every open 4-manifold obtained by removing a
finite number of points from a closed manifold admits a differential structure with
at most one exotic end. If Y0 ∈ Z has at least two ends, then by forming end
sums with ♮ki=1K̊t or K̊t♮R∞ (with t > r0), we obtain uncountably many non-
diffeomorphic smooth manifolds Y ∈ Y that are homeomorphic to Y0, all of them
satisfying Theorem 1. The same holds for many manifolds Y0 ∈ Z with one end.

In proving Theorem 1 we use the basic theory of codimension 1 foliations of
smooth compact manifolds presented as integrable plane fields. Note that in this
general situation there exists a smooth transverse one-dimensional foliation N and
a biregular foliated atlas, i.e., one in which each coordinate neighborhood is foliated
simultaneously as a product by F and N . The transverse coordinate changes are
only assumed to be continuous but the leaves can be taken to be smooth manifolds
and the local projection along N of one plaque onto another plaque in the same
chart is a diffeomorphism. Our basic tools are Dippolito’s octopus decomposition
and his semistability theorem [5, 9] as well as the trivialization lemma of G. Hector
[19].

We assume that our foliation is transversely oriented, which is not a real re-
striction since all the manifolds considered are simply connected and therefore, by
passing to the transversely oriented double cover, the foliation becomes transversely
oriented. For a saturated open set U of (M,F) we let Û be the completion of U
for the Riemannian metric of M restricted to U . The inclusion i : U → M clearly
extends to an immersion i : Û → M , which is at most 2-to-1 on the boundary leaves
of Û . We shall use ∂τ and ∂⋔ to denote the tangential and transverse boundaries,
respectively.

Theorem 2.5 (Octopus decomposition [5, 9]). Let U be a connected saturated open
set of a codimension 1 transversely orientable foliation F in a compact manifold
M . There exists a compact submanifold K (the nucleus) with boundary and corners
such that

(1) ∂τK ⊂ ∂τ Û
(2) ∂⋔K is saturated for i∗N

(3) the set Û \K is the union of finitely many non-compact connected compo-
nents B1, . . . , Bm (the arms) with boundary, where each Bi is diffeomorphic
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to a product Si × [0, 1] by a diffeomorphism φi : Si × [0, 1] → Bi such that
the leaves of i∗N exactly match the fibers φi({∗} × [0, 1]).

(4) the foliation i∗F in each Bi is defined by the suspension of a homomorphism
from π1(Si) to the group of homeomorphisms of [0, 1]. Thus the holonomy
in the arms of this decomposition is completely described by its action on a
common complete transversal.

Observe that this decomposition is far from being canonical, for the compact set
K can be extended in many ways yielding other decompositions. We do not consider
the transverse boundary of Bi to be a part of Bi; in particular, the leaves of i∗F |Bi

are open sets in leaves of i∗F . Remark also that the word diffeomorphism will only
be applied to open sets (of M or of leaves of F); on the transverse boundaries the
maps are only considered to be homeomorphisms.

Lemma 2.6 (Trivialization Lemma [19]). Let J be an arc in a leaf of N . Assume
that each leaf meets J in at most one point. Then the saturation of J is diffeomor-
phic to L×J , where L is a leaf of F , and the diffeomorphism carries the bifoliation
F and N to the product bifoliation of L× J (with leaves L× {∗} and {∗} × J).

Theorem 2.7 (Dippolito semistability theorem [5, 9]). Let L be a semiproper leaf
which is semistable on the proper side, i.e., there exists a sequence of fixed points
for all the holonomy maps of L converging to L on the proper side. Then there
exists a sequence of leaves Ln converging to L on the proper side and projecting
diffeomorphically onto L via the fibration defined by N .

Let X be a neighborhood of the ends of Y ∈ Y identified with
⊔n
i=1 S

3 × [0,∞)
such that the boundaries

⊔n
i=1 S

3×{0} are (topologically) bicollared in Y . Denote
the connected components of X by Xn, where X1 is an exotic end diffeomorphic to
a finite end-sum of R. Then we have the decomposition

Y = KY ∪X

where KY is the closure of Y \X , so it is compact with boundary, and, in the case
that Y is not homeomorphic to R

4 with finite punctures, it has non-trivial second
homology.

Now we have enough information to begin to follow the line of reasoning of Ghys
[15]. For the rest of this section we assume that Y ∈ Y is diffeomorphic to a leaf,
and we shall find some constraints.

Definition 2.8. We say that a leaf L ∈ F contains a vanishing cycle if there
exists a connected 3-cycle Σ ⊂ L that is non-null-homologous on L and a family
of connected 3-cycles {Σ(n) | n ∈ N} on L that are null-homologous on L and
converge to Σ along leaves of the transverse foliation N .

Proposition 2.9. In a (transversely oriented) C0 codimension one foliation of
a compact manifold, no simply connected leaf L with at least two ends contains
an embedded vanishing cycle Σ homeomorphic to S3 in an end homeomorphic to
S3 × (0,∞).

To prove this, we shall use a weak generalization of Novikov’s theorem on the
existence of Reeb components, Theorem 4 of [25]. Recall that a (generalized)
Reeb component with connected boundary is a compact (k + 1)-manifold with a
codimension one foliation such that the boundary is a leaf and the interior fibers
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over the circle with the leaves as fibers. Suppose we are given a compact (k +
1)-manifold M with a transversely oriented codimension one foliation F and a
transverse foliation N , and also a connected closed k-dimensional manifold B with
a bifoliated map h : B × [a, b] →M , where [a, b] is an interval in the real line, such
that h(B × {t}) is contained in a leaf Lt of F for every t ∈ [a, b] and ha : B → La
is an embedding, where ht(x) = h(x, t).

Theorem 2.10 (See [25], Theorem 4). If for every t ∈ (a, b], Bt = ht(B) bounds
a compact connected region in Lt, but Ba does not bound on La, then La is the
boundary of a Reeb component whose interior leaves are the leaves Lt for t ∈ (a, b].

Proof of Proposition 2.9. Let L be a simply connected leaf with at least two ends
in a C0 codimension one foliation of a compact manifold M , and suppose that L
contains an (embedded) vanishing cycle Σ homeomorphic to S3 in an end homeo-
morphic to S3 × (0,∞). Then there is a sequence Σ(n) of null-homologous 3-cycles
on L converging to the non-null-homologous 3-cycle Σ along a transverse foliation
N . Let Σ × [−1, 1] be identified with a bifoliated neighborhood of Σ so that Σ is
identified with Σ × {0}. We may assume without loss of generality that infinitely
many of the cycles Σ(n) are on the positive side of Σ and are contained in a fixed
domain of the end. Each Σ(n) bounds a compact region embedded in L. Let S+

(resp., S−) be the set of numbers t ∈ (0, 1] such that in the leaf Lt that contains
Σt = Σ×{t}, Σt bounds a compact region Ct on the positive (resp., negative) side
of Σt. Note that Ct must be 1-connected, so S+ and S− are open by Reeb stability.

Now there exists an ǫ > 0 such that S+ ∩S− ∩ (0, ǫ) = ∅, for any leaf containing
Σt with t ∈ S+∩S−∩(0, ǫ) would be the union of two compact regions and therefore
compact, so if no such ǫ existed, L would be a limit of compact leaves and therefore
compact, which is false. Now at least one of S+ and S− has 0 as a limit point—say
it is S+. If there existed c > 0 such that (0, c) ⊂ S+, then by Theorem 2.10, the leaf
L would be the boundary of a (generalized) Reeb component, which is compact,
again giving a contradiction. Hence there must exist open intervals (a, b) ⊂ (0, 1)
which are connected components of S+ arbitrarily close to 0, so (a, b) ⊂ S+ and
a /∈ S+. For a < ǫ, we also have a /∈ S− (for otherwise S+ ∩ S− ∩ (0, ǫ) would not
be empty), so Σa does not bound on La. Applying Theorem 2.10 again, we find
that the leaf La must be the boundary of a Reeb component and therefore compact.
Since this must hold for values of a arbitrarily close to 0, L must be compact, which
is false, so L cannot contain a vanishing cycle with the required properties. �

Proposition 2.11. Let F be a codimension one C1,0 foliation in a compact 5-
manifold M . If there exists a leaf L of F diffeomorphic to Y ∈ Y, then L is a
proper leaf without holonomy.

Proof. Since L is simply connected, it is a leaf without holonomy. We also observe
that L has a saturated neighborhood not meeting any compact leaves, since a
limit leaf of compact leaves is compact. Consider first the case where Y is not
homeomorphic to R

4 with a finite number of punctures. We consider KY to be a
subset of L, by using the diffeomorphism from Y to L. By Reeb stability there
exists a neighborhood U of KY bifoliated diffeomorphically as a product. If L
meets U in more than one connected component then there exists a compact subset
B ⊂ L homeomorphic to KY (via the transverse projection in U) and disjoint from
KY . This is impossible since the inclusion i0 : KY →֒ L induces an isomorphism
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i0∗ : H2(KY ) → H2(L), and the Mayer-Vietoris sequence shows that B would give
an additional non-trivial summand in H2(L). So in this case L is a proper leaf.

In the case where Y is homeomorphic to R
4 with k punctures we have to split the

proof into two parts. Firstly, if the Taylor-index is finite then we can find a compact
set K in Y diffeomorphic to ♮n1Ks (as in the last section, since the punctures can
be taken to be far away from K). If L is not proper, the application of Reeb
stability will produce infinitely many pairwise disjoint copies of Ks and therefore
γ(Y ) = ∞ by Proposition 1.12, contradicting the fact that Y is embedded in a
smooth manifold homeomorphic to 3k#S2 × S2.

On the other hand, assume that Y has an exotic end with infinite Taylor-index
(and therefore infinite engulfing index as well) and that the other ends are standard.
Let Q be a compact set in L homeomorphic but not diffeomorphic to S3 × [0, 1]
in a domain of the exotic end that is homeomorphic to S3 × (0,∞) such that
Q disconnects the exotic end from the standard ones. By Reeb stability there
exists a neighborhood of Q bifoliated as a product Q × (−1, 1) (with the original
Q identified with Q × {0}) where the projection of a tangential leaf to another in
this neighborhood is a diffeomorphism. If L ∩ Q × (−1, 1) contains a non-trivial
subsequence Q×{tn} with tn tending to 0, then these fibers belong to a domain of
the exotic end and two situations may occur:

(1) for all sufficiently large values of n, Q×{tn} does not disconnect the exotic
end from the standard ones. Since for these values of n, Q×{tn} bounds in
S4 (consider S3×(−1, 1) to be embedded in S4) and it does not separate the
two ends, it also bounds in S3× (−1, 1). Thus L would contain a vanishing
cycle, which is not possible by Proposition 2.9.

(2) Q × {tn} disconnects the ends of L for some subsequence of tn. Let Σ
be a smooth closed 3-submanifold in Q disconnecting its two boundary
components, and let Σn be the corresponding diffeomorphic copy of Σ in
Q×{tn}. It is clear that we can find some Σn arbitrarily close to the exotic
end yielding a finite engulfing index c(Y ) ≤ β1(Σ), which is a contradiction.

�

Proposition 2.12. Let L be a leaf diffeomorphic to Y . Then there exists an
open saturated neighborhood U of L which is diffeomorphic to L × (−1, 1) by a
diffeomorphism which carries the bifoliation F and N to the product bifoliation. In
particular, all the leaves of F |U are diffeomorphic to Y .

Proof. Since L is a proper leaf, there exists a path, c : [0, 1) → M , transverse
to F , with positive orientation and such that L ∩ c([0, 1)) = {c(0)}. Let U be
the saturation of c((0, 1)), which is a connected saturated open set and consider

the octopus decomposition of Û as described in Theorem 2.5. Clearly one of the
boundary leaves of Û is diffeomorphic to L because it is proper without holonomy
and c(0) ∈ L. We identify this boundary leaf with L and extend the nucleus K so
that the set K ′ = ∂τK ∩L is homeomorphic to KY . By Reeb stability, there exists
a neighborhood of K ′ foliated as a product by KY ×{∗}. Since L ⊂ ∂Û has an end,

there is an arm B1 that meets L. The corresponding S1 is diffeomorphic to X̊1 and
thus B1 is foliated as a product (i. e., the suspension must be trivial). The union
of a smaller product neighborhood of L∩B1 and the product neighborhood of KY

meeting L gives a product neighborhood on the positive side of X1 ∪KY . We can
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proceed in the same way for all the ends (which are finitely many), thus obtaining
a product neighborhood on the positive side of L ≡ KY ∪X1 ∪ · · · ∪Xk.

Proceeding in the same way on the negative side of L we can find the desired
product neighborhood of L. Each leaf is clearly diffeomorphic to Y since the pro-
jection to L along leaves of N is a local diffeomorphism and bijective by the product
structure. �

Let Ω be the union of leaves diffeomorphic to Y . By the previous Proposition this
is an open set on which the restriction F |Ω is defined by a locally trivial fibration, so
its leaf space is homeomorphic to a (possibly disconnected) 1-dimensional manifold.
Let Ω1 be one connected component of Ω.

Lemma 2.13. The completed manifold Ω̂1 is not compact.

Proof. First we note that ∂Ω̂1 cannot be empty, for otherwise all the leaves would
be diffeomorphic to Y , hence proper and non-compact. It is a well known fact (see,
e.g., [5]) that a foliation in a compact manifold with all leaves proper must have
a compact leaf, for every minimal set of such a foliation is a compact leaf. Now
suppose that Ω̂1 is compact and let L be a leaf diffeomorphic to Y . Then the limit
set of the exotic end of L contains a minimal set, which must be a compact leaf.
This leaf, which we denote F , must be in the boundary of Ω̂1. The holonomy of F
has no fixed points (otherwise it would produce non-trivial holonomy on an interior
leaf) and all the orbits are proper. Therefore the holonomy group of each boundary
leaf must be isomorphic to Z.

Let us observe that a smoothly periodic end has finite engulfing index, for pe-
riodicity allows us to find a copy of a disconnecting smooth closed 3-submanifold
arbitrarily close to the given end.

Let h be the contracting map that generates the holonomy of F . Then there
exists an open neighborhood V ⊂ X1 of the exotic end of L where h is defined and
induces an embedding h : V → V such that {hn(V )} (n ≥ 0) is a neighborhood
base of the end (just by following the flow N in the direction towards F ). Therefore
V and h determine a smoothly periodic end in X1 which is diffeomorphic to an end
of ♮ki=1R (or to some finite end sum of Kt’s), but this contradicts Theorem 1.7 since

this exotic R4 has the same end as a punctured closed 4-manifold with intersection
form −kE8 ⊕ E8 which is not isomorphic to a diagonal form. �

Following the approach of Ghys [15], we have a dichotomy: the leaf space of
F |Ω1

, which is a connected 1-dimensional manifold, must be either R or S1.

Proposition 2.14. The leaf space of F |Ω1
cannot be R.

Proof. Since Ω̂1 is not compact there exists at least one arm for its octopus de-
composition. Let B1 be such an arm that is diffeomorphic to S1 × [0, 1] via a
diffeomorphism φ1 carrying the vertical foliation to i∗N . If the leaf space is R,
then φ1({∗} × (0, 1)) must meet each leaf in at most one point. Then the Trivi-
alization Lemma 2.6 shows that the saturation of φ1({∗} × (0, 1)) is diffeomorphic

to a product L × (0, 1). Then the process of completing Ω1 to Ω̂1 shows that the
product L× (0, 1) extends to a product L× [0, 1), so the boundary leaf correspond-
ing to L× {0} must be diffeomorphic to Y , but this is a contradiction since leaves
diffeomorphic to Y have to be interior leaves of Ω. �
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Since Ω1 cannot fiber over the line, it must fiber over the circle, but this is just
the conclusion of Theorem 1, so its proof is complete.

3. The theory of levels and exotic structures

According to the previous section, each of our manifolds in Y ∈ Y that is realized
as a leaf must be the fiber in a fibration of an open saturated set Ω1 over the circle
with diffeomorphic leaves as the fibers, and Ω1 must spiral to somewhere in the
ambient manifold. In this section we shall describe the theory of levels in C1+Lip

foliations and use it to show the following theorem. In the course of the proof of
this theorem, we also prove Theorem 3, which is valid in all dimensions.

Theorem 3.1. For any manifold Y ∈ Y there exists an uncountable subset YY ⊂ Y
of (diffeomorphically distinct) manifolds homeomorphic to Y that are not diffeomor-
phic to any leaf at finite depth in a C1+Lip codimension 1 foliation of a compact
manifold.

To begin the proof, let us fix Y ∈ Y and Ω1 and consider the map h : Ω1 → Ω1

which maps each point x ∈ L′ ⊂ Ω1 to the first return point h(x) ∈ L′ along the
transverse foliationN in the negative direction. This is well defined globally because
each leaf has a neighborhood bifoliated as a product and the leaf space is the circle.
This is the monodromy map which is an orientation-preserving automorphism of
our exotic manifold L.

Next we recall level theory in codimension 1 foliations [5]. For this part we need
extra regularity on the transverse changes of coordinates, which we assume to be
at least C1+Lip (i.e., the transverse coordinate changes have first derivatives that
are Lipschitz functions).

Definition 3.2. A local minimal set of an open saturated set U is a non-empty
set, closed in U and minimal for the relation of inclusion.

It is clear by Zorn’s Lemma that a minimal set for F exists in a compact manifold,
but in general it is false that every open saturated subset of (M,F) contains a local
minimal set.

Proposition 3.3. [5] Let (M,F) be a C1+Lip codimension 1 foliation on a compact
manifold. Then every open saturated set U contains a local minimal set. The union
of the local minimal sets in a given U is closed in U .

It follows that under this C1+Lip hypothesis there exists a countable filtration
∅ ⊂ M0 ⊂ M1 ⊂ · · · ⊂ Mn ⊂ · · · ⊂ M where M0 is the union of the minimal
sets of F and, inductively, Mi is the union of Mi−1 and the local minimal sets in
M \Mi−1.

Definition 3.4. A leaf belongs to the level k if it is contained in Mk \Mk−1.

It is possible to have a leaf which does not belong to any finite level, but in this
case it must be non-proper [5]. Therefore all the manifolds we have been consid-
ering as leaves are at finite levels, since they are proper leaves. For codimension 1
foliations, local minimal sets must be of one of the three following types: a proper
leaf, the saturation of an open subset of a transverse Cantor set (these are called
exceptional) or a saturated open set where all leaves are dense.

The theory of levels says that a leaf at level k accumulates on a finite number of
local minimal sets at level k − 1 and so on until we reach the level zero. When all
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the intermediate local minimal sets are proper leaves we say that our leaf has depth
k. For a leaf L at depth k, we say that L′ is a closest leaf to L if L accumulates
on L′ and there are no other leaves in the limit set of L which accumulate on L′.
Note that a closest leaf need not be at depth k − 1.

Lemma 3.5. Let L be a leaf at depth k and let L′ be a closest leaf to L. Then the
action of the holonomy group of L′ on L is infinite cyclic.

Proof. Since L′ is proper, Dippolito’s theorem implies that there exists a small
transversal T meeting L′ in one point where a set of generators of the holonomy
group of L′ are defined. Since L′ is a closest leaf to L and L is also proper, L ∩ T
is a discrete set with exactly one accumulation point, which is {x} = T ∩L′. Since
the foliation is transversely oriented we can work on only one side of T . It is clear
that a generator h ∈ Hol(L′, x) will have fixed points in T ∩ L arbitrarily close to
x if and only if h fixes all the points in T ∩ L (otherwise T ∩ L would have an
accumulation point different from x in T ), and then the holonomy would be the
identity on T ∩L, which is impossible, since L accumulates on L′. Otherwise h|T∩L

is determined by the image of h(y) 6= y for some y ∈ T ∩ L. There is a common
divisor for the germs of this kind of maps, hence the action of Hol(L′, x) in L ∩ T
must be infinite cyclic. �

Proposition 3.6. [5] If L is a leaf at finite depth, then its closure L is a finite
union of leaves.

Lemma 3.7. Let L be a leaf at depth k. There exists a compact set K ⊂ L such
that each connected component V ⊂ L \K is contained in a normal neighborhood
of a (unique) closest leaf L′.

Proof. For each unbounded domain V ⊂ L there exists a closest leaf L′ where V is
accumulating. Closest leaves are disjoint proper leaves at lower depth and there are
only finitely many, so there exist normal neighborhoods (foliated by N ) pairwise
disconnecting the closest leaves of L (but remark that closest leaves can share leaves
on which they accumulate). Thus, there exists a compact set K such that L \K
is contained in the union of these pairwise disjoint neighborhoods (because closest
leaves are the first ones on which L accumulates). �

Next, we shall prove Theorem 3, which states that, up to diffeomorphism, there
are only countably many open smooth manifolds which can be leaves at finite depth
in a C1+Lip codimension one foliation on a compact manifold.

Proof of Theorem 3. At depth 0 proper leaves are compact leaves, and there are
only countably many smooth closed manifolds at this level (up to diffeomorphism).

Assume by induction that the set of smooth open manifolds which can lie at
depth i < k in any codimension 1 C1+Lip-foliation is countable (up to diffeomor-
phism).

By Lemma 3.7 outside a compact domain K, a leaf L at depth k accumulates
on a finite set of closest leaves and therefore there exists a compact set K ⊂ L
such that L \K is contained in a union of normal neighborhoods (foliated by N ) of
these closest leaves where the generators of the holonomy group are defined. Each
connected component of L \ K accumulates on a closest leaf L′ in a cyclic way,
according to Lemma 3.5. Since the action of the holonomy of L′ on L is determined
by an element of the countable group H1(L′,Z), it follows that, for a given choice
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of smooth structures on the closest leaves, each component of L\K admits at most
countably many smooth structures compatible with them. They are obtained by
lifting the structure of the closest leaf L′, which is a leaf at lower depth.

If a given set of smooth structures on the closest leaves is changed to a diffeomor-
phic set of structures, it is clear that such a diffeomorphism lifts to a diffeomorfism
on each connected component of L \ K. It follows that there is only a countable
set of end-smooth structures up to diffeomorphism for leaves at depth k.

Fix an end-smooth structure E in L \K. Let L(E) be the set of open smooth
manifolds with the same smooth end structure. Up to diffeomorphism this set is
countable since the family of smooth structures on compact manifolds with bound-
ary is countable up to diffeomorphism.

If we change the end-structure E′ in L \K to a diffeomorphic one then, for any
element in L(E), there exists an element in L(E′) which is diffeomorphic to it.
Therefore, up to diffeomorphism, there exist at most countably many smooth open
manifolds which can lie at depth k. This completes the induction. �

Since there are uncountably many smooth structures homeomorphic to Y in Y,
and by Theorem 3 only countably many can be leaves of finite depth, the proof of
Theorem 3.1 is complete.

4. Transversely analytic foliations and exotic structures

Now for Y ∈ Y, the manifolds in YY are homeomorphic to Y and cannot be
leaves at finite depth. In this section we shall prove Theorem 2 by showing that
they cannot be leaves of transversely analytic foliations. Clearly, the properties
of Ω1 make it impossible for some intermediate local minimal set to be an open
saturated set in which the leaves are dense. Since they cannot be leaves at finite
depth, some intermediate local minimal set must be exceptional. To exclude this
case, we shall use the beautiful theorem of Duminy.

Theorem 4.1 (Duminy, see [23]). For a C1+Lip codimension 1 foliation, the endset
of a leaf passing through an accessible point of an exceptional local minimal set is
homeomorphic to a Cantor set.

It is time now for the unique result for transversely analytic foliations (see [6])
which will be used in this paper.

Definition 4.2. Let U be a connected open saturated set of a codimension 1
foliation on a compact manifold. We say that U is trivial at infinity if there exists
an octopus decomposition of Û such that the foliation on every arm is trivial (i.e.,
the total holonomy group in every arm is trivial). Note that this definition includes

the case where Û is compact.

Theorem 4.3 (Cantwell, Conlon, Hector, Duminy; see Lemma 3.5 and the subse-
quent Remark in [6]). Let F be transversely analytic. Then every connected open
F-saturated set U is trivial at infinity.

Proof of Theorem 2. According to Theorem 3.1, for any manifold Y ∈ Y there
exists an uncountable subset YY ⊂ Y of manifolds homeomorphic to Y that are
not diffeomorphic to any leaf at finite depth. As before, the leaves diffeomorphic to
Y form an open saturated set, and we let Ω1 be one of its connected components.

By Theorem 4.3 the arms of the octopus decomposition of Ω̂1 can be chosen to be
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trivial suspensions. Note that at least one arm exists by Lemma 2.13. Manifolds
in YY cannot lie at finite depth and so the boundary leaves of Ω̂1 must accumulate
on some exceptional local minimal set. In this situation each arm of Ω̂1 must meet
some gap T of the exceptional minimal set; the gap is an interval in a leaf of N
whose interior is in the complement and whose endpoints are in the exceptional
minimal set. Considering the two octopus decompositions of the saturation of T
and of Ω̂1, we can see that the arm B is embedded in an arm B′ of the saturation
of T , and there the foliation is again trivial by Theorem 4.3.

Since the suspension is trivial, every leaf L in Ω1 meets the arm B′ in one or
more components, each of them homeomorphic to the intersection of the accessible
leaf with the arm B′. Thus each connected component of L ∩ B has a Cantor set
of ends (by Duminy’s theorem) and a compact boundary since the boundary of the
base manifold for the trivial suspension is a closed subset of the compact nucleus
of the decomposition. As a consequence L has infinitely many ends, contradicting
the fact that every manifold in Y has finitely many ends. �

Final comments

As far as we know, this work is gives the first insight into the problem of realizing
exotic structures on open 4-manifolds as leaves of a foliation in a compact manifold.
We express our hopes in the following conjecture, which we are far from proving,
since it includes the higher codimension case and lower regularity assumptions,
which are not treated in this paper. It is a goal for future research.

Conjecture 4.4. No open 4-manifold with an isolated end diffeomorphic to R or
to ♮nR is diffeomorphic to a leaf of a C1,0 foliation of arbitrary codimension in a
compact manifold.

Now let us say something about small exotica (those that embed as open sets
in the standard R

4). Small exotica are more interesting from a physical point of
view since they support Stein structures (see e.g. [17]). There is a Taubes-type
theorem for them based on the work of DeMichelis and Freedman [8] and with
more generality in [29], but sadly it is not enough for us to adapt Lemma 2.13. In
addition, there is no “Taylor-index” invariant and therefore the first part of our
arguments, which shows that the leaf must be a proper leaf, fails for small exotic
R

4’s, although it works for punctured simply connected 4-manifolds obtained by
removing finitely many points from closed manifolds not homeomorphic to S4, since
for these manifolds the argument is purely topological.

It is worth noting that if the smooth 4-dimensional Poincaré conjecture is false
then it is easy to produce exotic R

4’s which are leaves of a transversely analytic
foliation. Consider S4 × S1 with the product foliation, where S4 has an exotic
smooth structure, and insert a Reeb component along a transverse curve, for exam-
ple {∗} × S1. This can easily be done so as to preserve the transverse analyticity.
The leaves would be exotic R

4’s with a standard smooth structure at the end.
Finally we include a last remark. By a personal communication from J. Álvarez

López, it seems possible that every Riemannian manifold with bounded geometry
can be realized isometrically as a leaf in a compact foliated space. It is known
[18] that every smooth manifold supports such a geometry, so it would follow as
a corollary that every smooth manifold is diffeomorphic to a leaf in a compact
foliated space. In particular this would be true for any exotic R

4. However the
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transverse topology of this foliated space would in general be far from being a
manifold. Anyway, this gives us some hope of finding an explicit description of
exotic structures by using finite data: the tangential change of coordinates of a
finite foliated atlas.
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