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Abstract. Following the model in [DHRS] we introduce a two-parameter fam-

ily of skew products (Ga,t)a>0,t∈[−ε,ε] maps, where the parameter a models

the central dynamics and the parameter t the unfolding of cycles (that occurs

for t = 0). The parameter a also measures the “central distortion” of the

systems: for small a the distortion of the systems is small and it increases
and goes to infinity as a → ∞. The family (Ga,t) displays some of the main

characteristic properties of the unfolding of heterodimensional cycles as inter-
mingled homoclinic classes of different indices and secondary bifurcations via

collision of hyperbolic homoclinic classes.

For a ∈ (0, log 2) the dynamics of (Ga,t) is always non-hyperbolic after
the unfolding of the cycle. However, for a > log 4 intervals of t-parameters

corresponding to hyperbolic dynamics appear and turn into totally prevalent

as a→∞ (the density of “hyperbolic parameters” goes to 1 as a→∞).
The dynamics of the maps Ga,t is described using a family of iterated func-

tion systems modeling the dynamics in the one-dimensional central direction.

1. Introduction

In [BDV, Preface] there are discussed semi-local bifurcation mechanisms which
are sources of persistent forms of non-hyperbolic dynamics. Based on these mech-
anisms two sorts of dynamics are presented:

(1) Critical dynamics whose paradigmatic examples are the quadratic and the
Hénon families and whose genuine bifurcations are the homoclinic tangen-
cies (the invariant manifolds of a saddle have a non-transverse intersection);

(2) Non-critical dynamics associated to the coexistence of intermingled hy-
perbolic sets having different unstable dimensions (indices) and exhibiting
some weak form of hyperbolicity (partial hyperbolicity, a dominated split-
ting, for example). The genuine bifurcations in this sort of dynamics are
the heterodimensional cycles (the invariant manifolds of a pair of hyperbolic
saddles of different indices intersect cyclically).

In homoclinic bifurcations (tangencies) the one-dimensional quadratic family
plays a key role and in some aspects it “models” the dynamics at these bifurcations:
in very rough terms, the quadratic family is a limit dynamics and some of its
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Figure 1. Heterodimensional cycle

properties can be translated to the dynamics of the bifurcating maps. See [PT2,
Chapters 3 and 6] for details.

Still in the critical setting and for dynamics in surfaces, the Hénon family is a
model that illustrates the transition from hyperbolic behavior to a non-hyperbolic
one (boundary of hyperbolicity, see [BS, CLR]). In this transition some of the typ-
ical features of non-hyperbolic critical dynamics (as coexistence of infinitely many
sinks [N], existence of strange attractors [BC, MV], and persistence of homoclinic
tangencies [N], among others) are displayed. This family was intensively studied
since the 80’s and one of its appeals is its simplicity (a quadratic map depending
on two parameters) which in some cases allows explicit calculations.

In the case of heterodimensional cycles there are no such “model families”. The
aim of this paper is to introduce a simple two-parameter family that displays most
of the typical features of heterodimensional bifurcations (see the discussion below).
This family has a “one-dimensional” model given by a system of iterated functions
(IFS in what follows). Before going into the details we need a preliminary discussion.

Let us fix some notation. Consider two saddles P and Q of different indices
of a diffeomorphism f which are involved in a heterodimensional cycle (in what
follows just a cycle) such that W s(P )∩Wu(Q) is a curve γ joining P and Q called
a connexion1 (see Figure 1). A heuristic principle is that the dynamics after the
bifurcation is “essentially” determined by the restriction of f to γ (called central
dynamics). Oversimplifying the analysis, the dynamics given by the “transition”
from P to Q (called cycle dynamics) plays no relevant role (indeed, the only rel-
evant point is if this transition preserves or not the “central orientation”, but let
us skip this technical point). When the “distortion” of the restriction f|γ is small
the dynamics is robustly non-hyperbolic after the bifurcation, [D1, D2], while when
this distortion is “big and nicely distributed” large parameter intervals of hyper-
bolic dynamics appear, [DR1]. Systems with “intermediate distortion” are poorly
understood.

In the sequel of the unfolding of the cycle the homoclinic classes of P and Q (see
definition below) explode and new homoclinic and heteroclinic points are generated.
A key problem is to determine the dynamics of these two classes. A pre-requisite
for hyperbolicity is the disjointness of these classes. Typical features displayed by
the dynamics at these cycles include the following phenomena:

• robustly non-transitive sets and intermingled non-hyperbolic homoclinic
classes, [D1, D2, DR2];

1In this case one speaks of a connected cycle.
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Figure 2. One-dimensional dynamics

• collisions of homoclinic classes (at the collision the homoclinic classes of P
and Q are non-disjoint and their intersection is the orbit of a saddle-node),
[DR3, DS];
• robust cycles (existence of two transitive hyperbolic sets of different indices

whose invariant manifold intersect cyclically and robustly) [BD, BDK]; and
• hyperbolic dynamics, [DR1].

We present systems (Ga,t)a>0,t∈[ε,ε] with a heterodimensional cycle at t = 0 for
every a. The parameter t describes the unfolding of the cycle while the parame-
ter a measures the central distortion which goes from 0 to ∞ as a increases. The
central dynamics of Ga,t (any t) is given by a central map ga : [0, 1/2] → R hav-
ing a repelling point 0 and and attracting point 1/2 and the cycle map is a map
ft : [0, 1/2]→ R (independent of a) with f0(1/2) = 0 and ft(1/2) = t (see Figure 2).
Suitable compositions of these two maps lead to a two-parameter family of IFS’s
that determine the dynamics after the bifurcation (see the discussion below). An
advantage of our model is that the maps ga and ft are given by explicit simple
formulae which allows precise quantitative estimates.

We now discuss our results a bit more precisely. We follow the approach proposed
in [PT1], we consider a skew product map2 f with a cycle associated to a pair of
“saddles” P and Q as above. We first fix a small neighborhood V of this cycle (i.e.,
an open set that contains the intersections W s(P ) ∩Wu(Q) and Wu(P ) ∩Wu(Q)
and the points P and Q). The goal is to describe the dynamics of perturbations g
of f in the set V . Key objects in this description are the relative homoclinic classes
of P and Q in V , denoted by HV (P, g) and HV (Q, g) (we omit the dependence of
the saddles on the diffeomorphism). Recall that the class HV (R, g) is the closure of
the transverse homoclinic points of R whose orbits remain in V , see Definition 2.5.

The strategy is to consider curves of diffeomorphisms (ft)t∈[ε,ε] with f0 = f
unfolding the cycle. One pays special attention to those dynamical features which
are displayed more frequently or with positive frequency after the bifurcation (say
for t > 0) by the diffeomorphisms ft in the neighborhood V of the cycle. This leads
to two main sets of parameters corresponding to non-hyperbolic and hyperbolic3

dynamics:

N
def
= {t ≥ 0: HV (P, ft) ∩HV (Q, ft) 6= ∅};

H
def
= {t ≥ 0: the relative dynamics of ft in V is hyperbolic}.

(1.1)

2The skew product maps that we consider have differentiable realizations. On the other hand,

in the case of a diffeomorphism which has well defined strong stable and unstable foliations, the

corresponding quotient map provides a skew product.
3by hyperbolicity we mean that the system is Axiom A and has no-cycles.
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We are interested in the limits

N+ def
= lim sup

s→0+

|N ∩ [0, s]|
s

, N−
def
= lim inf

s→0+

|N(s) ∩ [0, s]|
s

,

H+ def
= lim sup

s→0+

|H(s) ∩ [0, s]|
s

, H−
def
= lim inf

s→0+

|H(s) ∩ [0, s]|
s

,

(1.2)

that measure the frequency of non-hyperbolic and hyperbolic dynamics at the bi-
furcation, respectively (here | · | stands for the Lebesgue measure). For each family
(Ga,t)t∈[−ε,ε] we define the sets Na(s) and Ha(s) and the limit frequencies N±a and

H±a as above.
The family (Ga,t) exhibits the known complex features associated to heterodi-

mensional cycles mentioned above and has the property that the proportion of
hyperbolicity after the bifurcation goes from 0 to 1:

• a ∈ (0, log 2), if t is small then (0, t) ⊂ Na(t) and thus N−a = 1 and H+
a = 0,

• H−a → 1 as a→∞.

A much more complete description of the bifurcating diagram of the family (Ga,t)
can be found in Theorem 2.6 that provides a picture of the bifurcation scenario for
this family, that includes secondary cycles and collisions of homoclinic classes. Our
methods allow us to consider parameters with “intermediate” distortion. However,
there is a-parameter window with intermediate distortion for which the description
of the dynamics is still embryonic.

We close this introduction with a brief discussion of the underlying IFS associated
to the bifurcation which is interesting by its own. To study the dynamics of Ga,t we
fix an appropriate fundamental domain Da,t = (da,t, ga(da,t)] of the central map ga
and consider the returns to this domain by (admissible) compositions of the maps
ga and ft. This leads to a “return map” with resembles the Gauss map (although
it preserves the orientation) with the following properties (see Figure 3):

(1) It has infinitely many branches and an asymptote at x = da,t;
(2) The derivative is positive and decreasing in each branch;
(3) The only branch that may not be onto is the one containing the extreme

ga(da,t).

The transition from systems with “small” to “big” distortion is illustrated as fol-
lows: (i) For maps with small distortion all branches are expanding. (ii) In the
intermediate regime, a branch with contracting and expanding points appear. In
some cases defining an induced map one may overpass this lack of expansion. (iii)
For maps with “big” distortion the contracting points occupy a large proportion of
the phase space.

This paper is organized as follows. In Section 2 we define the family Ga,t and
state the pertinent definitions and Theorem 2.6. Some terminology and general
facts about skew products are presented in Section 3. In Section 4 we introduce
the IFS associated to the skew product and study the dynamics of the this IFS.
There are two different types of parameters, those whose returns are expanding
(studied in Section 5) and those having a hyperbolic-like mixed behavior (studied
in Section 6). In Section 7 we study the dynamics in a neighborhood of the cycle
using the IFS. Finally, in Section 8 we prove our main result (Theorem 2.6).
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Figure 3. Return maps

2. The model family and statement of the main result

In this section, we describe the model family Ga,t of one-step skew product maps
that we consider and state precisely our main result. This family was motivated by
the example of a skew product map with a cycle in [DHRS]4

Consider the shift map σ defined on the set Σ2 = {0, 1}Z endowed with the
standard metric. Denote an element α ∈ Σ2 by α = (αi)i∈Z. By definition σ(α) = ᾱ
where ᾱi = αi+1. We consider maps of the form

Ga,t : Σ2 ×
(

−1

2(ea − 1)
, 1

]
→ Σ2 × R, Ga,t(α;x) =

(
σ(α); gα0,a,t(x)

)
. (2.1)

We now define the fiber maps g0,a,t and g1,a,t for a ∈ (0,∞).

• The central central map g0,a,t are independent of t and defined5 by

ga(x) =
x ea

2x ea + (1− 2x)
.

• The cycle maps g1,a,t are independent of a and defined by

g1,t(x) = (x− 1/2) + t.

Remark 2.1 (Fixed points and cycle condition). In
(
−1/(2(ea−1)), 1

]
the map ga

has two fixed points (independent of a): the repelling point 0 with g′a(0) = ea > 1
and the attracting point 1/2 with g′a(1/2) = e−a < 1. The map g1,0 maps the
attracting point 0 into the repelling point 1, justifying the name cycle map.

Let 0Z ∈ Σ2 be the sequence consisting of 0’s and 0−N.10N ∈ Σ2 be the sequence
with α0 = 1 and αi = 0 if i 6= 0. Consider the points Q = (0Z, 0) and P = (0Z, 1/2).
These points are fixed points of Ga,t for every (a, t) and that

{0Z} × (0, 1/2) ⊂Wu(Q,Ga,t) ∩W s(P,Ga,t),

(0−N.10N, 1/2) ∈W s(Q,Ga,0) ∩Wu(P,Ga,0).

4Let us observe that our example has a completely different nature: the cycle map in [DHRS]

reverses the orientation, while in our case the orientation is preserved.
5Note that g1 is the time-one map of the vector field x′ = 2x (1− 2x).
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This implies that the stable and unstable sets of P and Q intersect cyclically for
every Ga,0. As the points P and Q have different central behavior (contracting
and repelling, respectively), one can think of theses points as points with different
indices and thus Ga,0 as a map with a heterodimensional cycle.

2.1. Hyperbolicity, cycles, and homoclinic classes. We next discuss suc-
cinctly how the notions of hyperbolicity, cycles, and homoclinic classes can be
translated to the maps Ga,t (this can be done in the general setting of skew-product
maps). A more detailed discussion can be found in Section 3.

Definition 2.2 (Hyperbolicity). A Ga,t-invariant set Ka,t is hyperbolic of contract-
ing type if there are constants C > 0 and λ ∈ (0, 1) such that for all (α, x) ∈ Ka,t

and for all n ≥ 0

|(gαn,a,t ◦ · · · ◦ gα0,a,t)
′(x)| < C λn+1.

The set is hyperbolic of expanding type if

|(gαn,a,t ◦ · · · ◦ gα0,a,t)
′(x)| > C λ−n−1.

It follows that Q = (0Z; 0) and P = (0Z; 1/2) are hyperbolic fixed points of Ga,t
of expanding and contracting type, respectively.

Definition 2.3 (Heterodimensional cycle or cycle). Two hyperbolic periodic points
A and B of Ga,t (of different type) have a heterodimensional cycle if their invariant
sets intersect cyclically,

Wu(A,Ga,t) ∩W s(B,Ga,t) 6= ∅ and W s(A,Ga,t) ∩Wu(B,Ga,t) 6= ∅.

Consider the sets

[.0N]
def
= {α = · · ·α−n · · ·α−1.0

N, whereα−i ∈ {0, 1}};

[0−N.]
def
= {α = 0−N.α0 · · ·αn · · · , whereαi ∈ {0, 1}}.

.

Note that

[0−N.]× {1/2} ⊂Wu(P,Ga,t) and [.0N]× {0} ⊂Wu(Q,Ga,t).

This implies that (0−N.10N, 1/2) ∈W s(Q,Ga,0)∩Wu(P,Ga,0). On the other hand,
for all a > 0 and t it holds

{0Z} × (0, 1/2) ⊂W s(P,Ga,t) ∩Wu(Q,Ga,t).

This implies that Ga,0 has a cycle associated to P and Q.
More generally, fixed (a, t), suppose that there are natural numbers ni ≥ 1,

i = 0, 1, . . . , k, such that

(g1,t ◦ gnk
a ) ◦ · · · ◦ (g1,t ◦ gn2

a ) ◦ (g1,t ◦ gn1
a ) ◦ g1,t(1/2) = 0. (2.2)

Then, by definition,

(0−N.10n10n21 . . . 0nk10N; 1/2) ∈Wu(P,Ga,t) ∩W s(Q,Ga,t).

Hence Ga,t has a cycle associated to P and Q.
A neighborhood of the cycle of Ga,0 associated to P and Q is an open set V

that contains the set {0Z} × (0, 1/2) ⊂W s(P,Ga,t) ∩Wu(Q,Ga,t) and the orbit of(
0−N.10N; 1/2

)
∈Wu(P,Ga,0) ∩W s(Q,Ga,0).
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Definition 2.4 (Homoclinic class). The homoclinic class of hyperbolic point A for
Ga,t, denoted by H(A,Ga,t), is the closure of the intersections of the invariant sets
W s(A,Ga,t) and Wu(A,Ga,t) of the orbit of A.

Two hyperbolic periodic points A and B of Ga,t are homoclinically related if they
are of the same type and the invariant sets of their orbits meet cyclically.

Given a neighborhood U of the orbit of a periodic point A, the relative homoclinic
class of A to U , denoted by HU (A,Ga,t), is the subset of H(A,Ga,t) of points whose
orbit is contained in U .

As in the case of differentiable dynamics, the homoclinic class of a periodic point
coincides with the closure of the set of points (of the same type) homoclinically
related to it. In the skew product context the transverse intersection condition
on the invariant manifolds in the definition of homoclinic relations is not required
(indeed it does not make sense). This is due to the fact that the dynamics in the
central direction is non-critical and therefore all the intersections between invariant
sets of hyperbolic periodic points of the same type behave as transverse ones. For
details see Section 3.2.

Finally, note that homoclinic classes are transitive sets (existence of dense orbits)
and they may fail to be hyperbolic (see items A and B of Theorem 2.6).

In what follows, we fix a small neighborhood V of the cycle and study the
dynamics of Ga,t in such a neighborhood (the dynamics relative to the set V ).
Note that as the periodic points P and Q are of different type if HV (P,Ga,t) =
HV (Q,Ga,t) then Ga,t is not hyperbolic.

Definition 2.5 (Relative dynamics). We say that Ga,t is Axiom A relative to the
neighborhood V of the cycle if the non-wandering set of the restriction of Ga,t to V
is hyperbolic and coincides with the closure of the set of periodic points.

Similarly, a (heterodimensional) cycle relative to V associated to a pair of hyper-
bolic periodic points A and B of different type means that there are heterocilinic
points X ∈Wu(A,Ga,t) ∩W s(B,Ga,t) and Y ∈W s(A,Ga,t) ∩Wu(B,Ga,t) whose
orbits are contained in V .

2.2. Main result. Recall the definitions of the set of parameters Na(s), Ha(s) in
(1.1) and of frequencies N±a and H±a in (1.2). Recall also that a periodic point
(α; a), α = (α0 . . . αk)Z, is a saddle-node of Ga,t if (gαk,t ◦ · · · ◦ gα0,t)

′(a) = 1.
We are now ready to state our main result describing the dynamics and some

typical bifurcations of the maps Ga,t.

Theorem 2.6. Consider the family of skew product maps Ga,t in (2.1) and the
hyperbolic fixed points Q = (0Z; 0) and P = (0Z; 1/2) of different type. For every
small neighborhood V of the cycle associated to P and Q the following holds:

(A) Robustly non-hyperbolic dynamics: for every a ∈ (0, log 2), a 6= log 1+
√

5
2 ,

there is t(a) > 0 such that (0, t(a)] ⊂ Na.

(B) Persistence of non-hyperbolicity: Let a ∈
(

log 2, log 3+
√

5
2

)
. Then

(a) either Ga,tn(a) has a (relative) cycle related to P and Q or there is a sequence

αn(a)→ 0+ such that [
tn(a)− αn(a), tn(a)

)
⊂ Na.

(b) There is ζ(a) ∈ (0, 1) with ζ(a)→ 1 as a→ log 2, such that for every n large
enough (

tn+1(a), tn+1(a) + ζ(a)
(
tn(a)− tn+1(a)

))
⊂ Na.
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Figure 4. Bifurcation diagram

(C) Prevalent hyperbolicity and secondary bifurcations: for every a > log 4
there are sequences of parameters tn(a), t?n(a) ↘ 0, t?n(a) ∈ (tn+1(a), tn(a)), such
that:

(a) Hyperbolicity: It holds (t?n(a), tn(a)) ⊂ Ha and for every t ∈ (t?n(a), tn(a))
the resulting non-wandering set of Ga,t is the disjoint union of the relative homo-
clinic classes of P and Q in V . Moreover,

lim
a→∞

H−a = 1.

(b) Secondary heterodimensional cycles: for every tn(a) the map Ga,tn(a)

has a cycle relative to V associated to P and Q.
(c) Collisions of homoclinic classes via saddle-noddes: for every t?n(a)

the intersection HV (P,Ga,t?n(a)) ∩ HV (Q,Ga,t?n(a)) is the orbit of a saddle-node.
Moreover, compact invariant subsets of these classes disjoint from the saddle-node
are uniformly hyperbolic.

The parameter a = 1+
√

5
2 is exceptional (see Lemma 5.4) and corresponds to the

appearance of branches of the IFS with contracting points. Similar results can be
obtained for this parameter, but the proofs must consider different types of returns.
We skip this technical discussion.

3. Skew product dynamics: homoclinic and heteroclinic points

In this section we state some properties of one-step skew product maps

G : Σ2 ×K→ Σ2 ×K, G(ξ;x) = (σ(ξ), gξ0(x)),

where K is a one-dimensional manifold (the circle, an interval, or the real line),
σ : Σ2 → Σ2 is the shift map, and g0, g1 : K → K are diffeomorphisms. We see
how the notions of hyperbolicity and homoclinic and heteroclinic intersections are
stated in the skew product context.

We use the cylinder notation for compositions of maps

g[ξ0...ξm]
def
= gξm ◦ · · · ◦ gξ0

and the following notation for pre and/or post-periodic sequences

ξ = (ξi)i∈Z =
(
(ρ−r · · · ρ−1)−N η−n · · · η−1 . η0 · · · ηk (α1 · · ·αm)N

)
;
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• ξi = ηi if i ∈ {−n, . . . , 0, . . . , k};
• ξk+sm+i = αi for every i ∈ {1, . . . ,m} and s ≥ 0;
• ξ−n−s r−i = ρ−i for every i ∈ {1, . . . , r} and s ≥ 0.

We similarly define a periodic sequence (ξ0 . . . ξπ−1)Z.

Given a sequence ξ = (ξi)i∈Z we consider its positive and negative tails ξ+ def
=

(ξi)i≥0 and ξ−
def
= (ξi)i≤0.

3.1. Hyperbolicity and continuations. Given a hyperbolic fixed point p of
g[ξ0...ξm] consider its local invariant manifolds W s,u

loc (p, g[ξ0...ξm]). If p is contracting
(resp. expanding) then Wu

loc(p, g[ξ0...ξm]) = {p} (resp. W s
loc(p, g[ξ0...ξm]) = {p}). As-

sociated to p there is the “hyperbolic” periodic point P = ((ξ0 . . . ξm)Z; p) of period
m + 1 of G (and vice-versa). We say that P is contracting (resp. expanding) is p
is contracting (resp. expanding).

As in the differentiable case, hyperbolic points of skew product maps have well
defined continuations. If F close to G then the cylinder map f[ξ0...ξm] is close to
g[ξ0...ξm] and thus the continuation pF of p is uniquely defined (pF is close to p and

f[ξ0...ξm](pF ) = pF ). Then the continuation of P for F is PF = ((ξ0 . . . ξm)Z; pF ).
The stable and unstable invariant sets of the periodic point P above are

W s(P,G) =

{
(η;x) :

η =
(
· · · . η0 · · · ηk(ξ0 · · · ξm)N

)
,

g[η0···ηk](x) ∈W s
loc(p, g[ξ0···ξm])

}
;

Wu(P,G) =

{
(η;x) :

η =
(
(ξ0 · · · ξm)−N η−k · · · η−1 . · · ·

)
,

g−1
[η−1···η−k](x) ∈Wu

loc(p, g[ξ0···ξm])

}
.

3.2. Homoclinic and heteroclinic intersections. A point X ∈ Wu(P,G) ∩
W s(P,G) is called a homoclinic point X of P . Homoclinic points behave as the
“transverse” ones in the differentiable case and have well defined continuations. To
see why this is so suppose, for instance, that P is contracting. Since X = (η;x) ∈
Wu(P,G)∩W s(P,G), after replacing X by some iterate if necessary, we can assume
that

X = (η;x) =
(
(ξ0 . . . ξm)−N . η0 . . . ηr (ξ0 . . . ξm)N;x

)
.

As Wu(p, g[ξ0...ξm]) = {p} one has that x = p and thus X = (η; p). Note that

Gr+1(X) = (η̂; x̂) = (η̂; g[η0...ηr](p)), where η̂ = (· · · . (ξ0 . . . ξm)N
)
.

Since X ∈W s(P,G), after replacing x̂ by some iterate of it of the form g`[ξ0...ξm](x̂)

we can assume that x̂ ∈ (p− δ, p+ δ) ⊂W s
loc(p, g[ξ0...ξm]).

Consider a map F close to G and the continuation PF = (ξ; pF ) of P for F .
If F is close enough to G then (p − δ, p + δ) ⊂ W s

loc(pF , f[ξ0...ξm]). Consider the

point XF = (η; pF ). Note that by construction XF ∈Wu(PF , F ) and F r+1(XF ) =
(η̂, f[η0...ηr](pF )). As F is close to G then f[η0...ηr](pF ) is close to g[η0...ηr](p), thus

f[η0...ηr](pF ) ∈ (p− δ, p+ δ) ⊂W s
loc(pF , f[ξ0...ξm−1]).

This implies that XF ∈W s(PF , F ). Thus XF ∈Wu(PF , F )∩W s(PF , F ) and it is
a homoclinic point of PF , called the continuation of X.

The following conditions for the existence of homoclinic and heteroclinic inter-
sections are consequences of the arguments in the discussion above.

Corollary 3.1 (Homoclinic and heteroclinic intersections). Consider hyperbolic
periodic points A =

(
(ξ0 . . . ξm)Z; a

)
and B =

(
(ν0 . . . ν`)

Z; b
)

of contracting and
expanding type of G, respectively.
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(1) If there is a finite sequence β0 . . . βr such that

g[β0...βr](a) ∈W s
loc(a, g[ξ0...ξm])

then
(
(ξ0 · · · ξm)−N . β0 · · ·βr (ξ0 · · · ξm)N, a

)
is a homoclinic point of A.

(2) If there are a sequence α−r . . . α−1 and z ∈Wu
loc(b, g[ν0...ν`]) with

g[α−r...α−1](z) = b.

Then
(
(ν0 · · · ν`)−N α−r · · ·α−1 . (ν0 · · · ν`)N, b

)
is a homoclinic point of B.

(3) If there is a finite sequence γ0 . . . γk such that

g[γ0...γk](a) = b

then
(
(ξ0 · · · ξm)−N . γ0 · · · γr (ν0 · · · ν`)N, a

)
∈Wu(A,G) ∩W s(B,G).

(4) If there are x ∈Wu
loc(b, g[ν0...ν`]) and a finite sequence τ0 . . . τj such that

g[τ0...τj ](x) ∈W s
loc(a, g[ξ0...ξ`])

then
(
(ν0 · · · ν`)−N . τ0 · · · γr (ξ0 · · · ξm)N;x

)
∈Wu(B,G) ∩W s(A,G).

4. One-dimensional dynamics. Iterated function systems

In this section we introduce the iterated function system associated to the maps
Ga,t and the unfolding of the cycle. This IFS describes the central dynamics in the
sequel of the bifurcation.

4.1. Preliminary calculations. The definitions of ga and g1,t provide explicit
formulae for their iterations, compositions, and derivatives. We list some identities
(that follow from the definitions of ga and g1,t) that we will use throughout the
text.

For x ∈ (0, 1/2) a straightforward calculation gives,

gna (x) =
x ena

2x ena + (1− 2x)
, (gna )′(x) =

e−na

x2
(gna (x))

2
. (4.1)

Fixed a > 0, consider sequence of parameters tn(a) given by

gna (tn(a)) = 1/2− tn(a) ⇐⇒ g1,tn(a) ◦ gna ◦ g1,tn(a)(1/2) = 0. (4.2)

An immediate consequence of Corollary 3.1 is the following:

Remark 4.1. Given a > 0, the map Ga,tn(a) has a cycle associated to P and Q
for every parameter tn(a).

From (4.1) after a simple calculation we get

e−na =
(2 tn(a))2

(1− 2 tn(a))2
. (4.3)

In particular, tn(a)↘ 0+. We also have the following relation between the param-
eters tn(a),

tn+1(a)

tn(a)
= e−

a
2

(1− 2 tn+1(a))

(1− 2 tn(a))
> e−

a
2 , lim

n→+∞

tn+1(a)

tn(a)
= e−

a
2 . (4.4)
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Using (4.3), we can rewrite (4.1) as follows,

gna (x) =
x(1− 2 tn(a))2

2x(1− 2 tn(a))2 + (1− 2x) (2 tn(a))2
;

(gna )′(x) =

(
2 tn(a)(1− 2 tn(a))

2x(1− 2 tn(a))2 + (1− 2x)(2 tn(a))2

)2

'
(
tn(a)

x

)2

.

(4.5)

4.2. Returns and iterated function systems. Given n define the interval of
parameters

In(a)
def
= (tn+1(a), tn(a)].

For each t ∈ In(a) define da,t ∈ (0, 1/2) by

g1,t ◦ gna (da,t) = 0 (4.6)

and consider the fundamental domain of ga given by

Da,t
def
=
(
da,t, ga(da,t)

]
. (4.7)

This domain varies continuously with t in In(a). For x ∈ Da,t and k ≥ 0 one has

0 < g1,t ◦ gn+k
a (x) < g1,t(1/2) ≤ t ≤ da,t.

Thus for each k ≥ 0 there is exactly one ik(x) ≥ 1 with

gik(x)
a ◦ g1,t ◦ gn+k

a (x) ∈ Da,t.

Bearing this in mind, for every pair j, k ≥ 0 we define the following subsets of Da,t,

D
(j,k)
a,t

def
= {x ∈ Da,t : ik(x) = j}.

Note that some of these subsets may be empty. By the monotonicity of the maps

g1,t and ga one has that D
(j,k)
a,t is either empty or

D
(j,k)
a,t

def
=
(
d
−,(j,k)
a,t , d

+,(j,k)
a,t

]
.

Finally, by definition, for each k ≥ 0 one has

Da,t =
⋃
j≥1

D
(j,k)
a,t , D

(j,k)
a,t ∩D

(m,k)
a,t = ∅ if j 6= m. (4.8)

Define now the return maps

Γ
(j,k)
a,t : D

(j,k)
a,t → Da,t, Γ

(j,k)
a,t (x)

def
= gja ◦ g1,t ◦ gn+k

a (x), t ∈ In(a). (4.9)

We also consider the compositions of the maps Γ(j,k),

Γb
a,t

def
= Γ

(jn,kn)
a,t ◦ · · · ◦ Γ

(j1,k1)
a,t : Db

a,t → Da,t, b = (jn, kn) · · · (j1, k1), (4.10)

where

Db
a,t

def
= (d−,ba,t , d

+,b
a,t ]

is the maximal set where the return map Γb
a,t is defined (this set may be empty).

Note that (Γb
a,t)
′ is strictly decreasing in Db

a,t.
We close this section with some estimates for da,t. Note that, by definition, if

t ∈ (tn+1(a), tn(a)) then

g1,t ◦ gna (tn(a)) < g1,tn(a) ◦ gna (tn(a)) = 0.

Thus

da,tn(a) = tn(a) and da,t > tn(a) > t if t ∈ (tn+1(a), tn(a)). (4.11)
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Φa,tΓia,t

Γm
a,t

Figure 5. The return map Φa,t (m = ma,t).

Write t = tn(a) (1 + µ), µ ≤ 0. From the definition of da,t and (4.5) one gets

da,t =

(
1− 2 tn(a) (1 + µ)

)
tn(a)

2
(
1− 2 tn(a)(1 + µ)

)
tn(a) + (1 + µ) (1− 2 tn(a))2

. (4.12)

It follows that for large n one has

da,t '
tn(a)

1 + µ
and ga(da,t)) '

ea tn(a)

1 + µ
, t = tn(a)(1 + µ). (4.13)

5. Expanding return maps for a ∈
(

0, log 1+
√

5
2

)
In this section, for appropriate pairs of parameters (a, t), we will construct an

expanding return map Φa,t as follows: (i) the map Φa,t is a composition of maps

Γ
(i,0)
a,t , has infinitely many discontinuities (a countable number) and is uniformly

expanding in each domain of continuity, (ii) the discontinuity points are mapped
to the right extreme of Da,t.

5.1. The expanding return map Φa,t. In this section we only consider maps

Γ
(i,j)
a,t with j = 0. Thus for notational simplicity let us write Γia,t

def
= Γ

(i,0)
a,t and

Di
a,t

def
= D

(i,0)
a,t .

Let us explain the definition of Φa,t. This map is obtained using compositions

of the maps Γia,t. Let ma,t be the first j ≥ 1 such that Dj
a,t 6= ∅. We will see that

the maps Γja,t, j ≥ 4, are uniformly expanding in Dj
a,t (Lemma 5.6). On the other

hand, when ma,t < 4 the map Γ
ma,t

a,t may fail to be expanding. This is the reason

we need to replace the map Γ
ma,t

a,t by some map of the form Γka,t ◦ Γ
ma,t

a,t . In some
cases this new map is expanding. We now go into the details of this construction.

For each point x ∈ Dma,t

a,t we define r(x) = ra,t(x) by the condition

Γ
ma,t

a,t (x) ∈ Dr(x)
a,t . (5.1)

Noting that Da,t =
⋃
j≥ma,t

Dj
a,t we define the following induced return map (see

Figure 5):

Φa,t : Da,t → Da,t, Φa,t(x)
def
=


Γia,t(x) if x ∈

⋃
i≥ma,t+1

Di
a,t,

Γ
r(x)
a,t ◦ Γ

ma,t

a,t (x) if x ∈ Dma,t

a,t .

(5.2)

In Sections 5.4, 5.5, and 5.6 we will see three different cases where the return
map Φa,t is uniformly expanding (for some pair of parameters (a, t)).
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Remark 5.1 (Discontinuities of Φa,t). Given a pair of parameters (a, t) we denote
by D(Φa,t) the set of discontinuities of Φa,t. Write m = ma,t and define `a,t = ` by

the condition Γma,t(ga(da,t)) ∈ D`
a,t. For each j ≥ ` there is a unique dm,ja,t ∈ Dm

a,t

such that Γma,t(d
m,j
a,t ) = dja,t. Then

D(Φa,t) = {dia,t, i ≥ m} ∪ {d
m,j
a,t , j ≥ `}.

Note that dm,ja,t → dma,t as j →∞.

Observe that, by definition, g1,t ◦ gn(da,t) = 0. Using this fact and the definition
of the discontinuity set we get the following:

Remark 5.2 (Images of the discontinuities of Φa,t).

• g1,t ◦ gn−1
a ◦ Γi+1

a,t (dia,t) = 0;

• g1,t ◦ gn−1
a ◦ Γja,t ◦ Γ

ma,t

a,t (d
ma,t,j
a,t ) = 0.

5.2. The sets Di
a,t. The analysis of the dynamics of the map Φa,t crucially involves

the extremes of the sets Di
a,t. Define

dia,t ∈ (0, 1/2) : gia ◦ g1,t ◦ gna (dia,t) = da,t, where t ∈ (tn+1(a), tn(a)]. (5.3)

Note that Dj
a,t = (dja,t, d

j−1
a,t ] 6= ∅ if j > ma,t and D

ma,t

a,t =
(
d
ma,t

a,t , ga(da,t)
]
.

Lemma 5.3. Consider a > 0 and t = (1 + µ) tn(a) ∈ (tn+1(a), tn(a)]. Then for
every n sufficiently big

dia,t ' tn(a)Ki(a, µ), where Ki(a, µ)
def
=

ei a (1 + µ)

ei a (1 + µ)2 − 1
.

Proof. Consider the extension of Γia,t to [0, 1/2] given by gia ◦ g1,t ◦ gna . With some

abuse of notation we will denote this extension also by Γia,t. Fix a and write

tn = tn(a) and dit = dia,t. Using the first part of (4.5) and (4.13), we rewrite
equation (5.3) as follows,

Γia,t(d
i
t) ' ei a

(
(1 + µ) tn −

1

2
+

dit (1− 2 tn)2

2 dit(1− 2 tn)2 + (1− 2 dit) (2 tn)2

)
' tn

1 + µ
.

Simplifying the central term of the equation above we get

tn

(
ei a (1 + µ)− 1

1+µ

ei a

)
' (1− 2 dit) (2 tn)2

4 dit (1− 2 tn)2 + 2 (1− 2 dit) (2 tn)2
.

Or equivalently,

ei a

tn

(
ei a (1 + µ)− 1

1+µ

) ' 4 dit (1− 2 tn)2 + 2 (1− 2 dit) (2 tn)2

(1− 2 dit) (2 tn)2
. (5.4)

With the notation in the lemma it follows

dit '
Ki(a, µ) tn − 2 t2n

2 tnKi(a, µ) + 1− 4 tn
= tn

(
Ki(a, µ)− 2 tn

2 tnKi(a, µ) + 1− 4 tn

)
' tnKi(a, µ).

This completes the proof of the lemma. �

Next lemma states some relations between ma,t and a.

Lemma 5.4 (Values of ma,t).

(1) Let a ∈ (0, log 2). Then ma,t > 1 for every t small enough.
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(2) Let a ∈
(
0, log 1+

√
5

2

)
. Then ma,t > 2 for every t small enough.

(3) Let a > log 2. Then ma,tn(a) = 1 for every tn(a) small enough.

Proof. For t ∈ (tn+1(a), tn(a)] write t = (1 + µ) tn(a).
To get that ma,t > 1 (i.e., D1

a,t = ∅) it is enough to see that ga(da,t) < d1
a,t. By

Lemma 5.3 and (4.13),

ga(da,t) '
ea tn(a)

1 + µ
< tn(a)

ea (1 + µ)

ea (1 + µ)2 − 1
' d1

a,t.

This inequality is equivalent to

1 <
(1 + µ)2

ea (1 + µ)2 − 1

which holds for all a ∈ (0, log 2) and 1 + µ ∈ (e−a/2, 1].
To prove item (2) it is enough to see that D2

a,t = ∅ (or equivalently that ga(da,t) <

d2
a,t) for every t small enough. As above

ga(da,t) '
ea tn(a)

1 + µ
< tn(a)

e2 a (1 + µ)

e2 a (1 + µ)2 − 1
' d2

a,t.

Thus it is enough to see that

1 <
ea (1 + µ)2

e2 a (1 + µ)2 − 1
.

Note that for 1 + µ ∈ (e−a/2, 1] one has

ea

e2 a − 1
<

ea (1 + µ)2

e2 a (1 + µ)2 − 1
.

Thus it is enough to see that e2 a − 1 < ea, where this inequality holds for all

0 < a < log 1+
√

5
2 .

To prove item (3) note that condition D1
a,tn(a) 6= ∅ is equivalent to da,t < d1

a,t <

ga(da,t). As above

da,tn(a) ' tn(a) < d1
a,tn(a) ' tn(a)

ea

ea − 1
< ga(da,tn(a) ' ea tn(a).

That is

1 <
ea

ea − 1
< ea,

which is satisfied for a > log 2. The proof of the lemma is now complete. �

We close this subsection with an extension of the first part of Lemma 5.4 that will
be used in Section 5.5. Observe that D1

a,t = ∅ (or ma,t > 1) when d1
a,t > ga(da,t).

By Lemma 5.3 and equation (4.13), for sufficiently large n, this occurs when

tn(a)

(
ea (1 + µ)

ea (1 + µ)2 − 1

)
> ea

(
tn(a)

1 + µ

)
⇐⇒ (1 + µ)2

ea (1 + µ)2 − 1
> 1.

For a > log 2 define ν(a) ∈ (e−a/2 − 1, 0) by the condition

(1 + ν(a))2

ea (1 + ν(a))2 − 1
= 1.

Observe that ν(a)→ (e−a/2 − 1) as a→∞.
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Note also that for a > log 2 we have D2
a,t 6= ∅ (or ma,t ≤ 2). This is equivalent

to

tn(a)

(
e2 a (1 + µ)

e2 a (1 + µ)2 − 1

)
< e2 a

(
tn(a)

1 + µ

)
⇐⇒ ea (1 + µ)2

e2 a (1 + µ)2 − 1
< 1,

where the last inequality holds for every µ with e−a/2 < (1 + µ) ≤ 1 if a > log 2.
Define for a > log 2

In(ν(a))
def
=
(
tn+1(a), (1 + ν(a)) tn(a)

)
⊂ In(a). (5.5)

The choice of ν(a) and the discussion above imply the following lemma.

Lemma 5.5. Consider a > log 2 and ν(a). Then there is n0(a) such that for every
n ≥ n0(a) and µ ∈

(
e−a/2 − 1, ν(a)

)
it holds

ma,t = 2 for every t ∈ In(ν(a)) ⊂ In(a).

5.3. Lower bounds for
(
Γja,t

)′
. The next step in the construction of the expand-

ing returns is to get a lower bound for
(
Γja,t

)′
. In what follows, for the extremes of

Dj
a,t the expressions

(
Γja,t

)′
(dj−1
a,t ) and

(
Γja,t

)′
(dja,t) mean the derivatives to the left

and to the right, respectively.

Lemma 5.6. Let t = tn(a) (1 + µ) ∈ In(a).

(1) For every n big enough it holds(
Γja,t

)′
(x) ≥ e(j−2) a (1 + µ)2, for all x ∈ Dj

a,t.

(2) Let a > log 1+
√

5
2 . Then there is τ(a) > 1 such that for every n big enough

and j ≥ 3 it holds(
Γja,t

)′
(x) ≥ τ(a) for all, x ∈ Dj

a,t.

Proof. Consider x ∈ Dj
a,t where t = tn(a) (1 + µ) ∈ In(a). From the monotonicity

of g′a and (gja)′(0) = ej a we get(
Γja,t

)′
(x) ≥

(
Γja,t

)′
(dja,t) ≥

(
gja ◦ g1,t ◦ gna

)′
(dja,t) ' ej a (gna )′(dja,t). (5.6)

Using the monotonicity of the derivative of ga we get(
Γja,t

)′
(x) ≥

(
gja ◦ g1,t ◦ gna

)′
(ga(da,t)) ' ej a (gna )′(ga(da,t)). (5.7)

Noting that ga(da,t) ' ea da,t and that da,t ' tn(a)/(1 + µ) (see (4.13)), from
equation (4.5) one gets

(gna )′(ga(da,t)) ' e−2a (1 + µ)2.

The first item of the lemma now follows from (5.7).

For the second item of the lemma, using equation (4.5), d3
a,t > dja,t for all j ≥ 3,

and Lemma 5.3 we get for j ≥ 3

(
Γja,t

)′
(x) ≥ ej a

(
tn

dja,t

)2

≥ e3 a

(
tn
d3
a,t

)2

' e3 a

 tn

tn
e3 a (1+µ)

e3 a (1+µ)2−1

2
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As e−a/2 < (1 + µ) ≤ 1 we have that(
Γja,t

)′
(x) ≥ e3 a

(
e3 a e−a − 1

e3 a e−a/2

)2

= e−2 a (e2 a − 1)2 = τ(a) > 1.

Where the last inequality follows from a > log
(

1+
√

5
2

)
. �

5.4. Expanding returns for a ∈ (0, log 2).

Theorem 5.7 (Expanding induced map Φa,t). Let a ∈ (0, log 2) with a 6= log 1+
√

5
2 .

There is κ(a) > 1 such that for every small t

Φ′a,t(x) ≥ κ(a) for all x ∈ Da,t.

Proof. Take t = (1 + µ) tn(a) ∈ In(a), µ ≤ 0. By Lemma 5.6 and (1 + µ) > e−a/2

(recall (4.3)) for sufficiently large n we get(
Γja,t

)′
(x) ≥ e(j−2) a(1 + µ)2 > ea > 1, if x ∈ Dj

a,t, and j ≥ 4. (5.8)

This estimate and the definition of Φa,t imply the theorem for points in Dj
a,t with

j ≥ 4 (note that if ma,t ≥ 4 this inequality also implies the expansion of Φa,t in
D
ma,t

a,t ).

Recall that D1
a,t = ∅ (ma,t > 1) for a ∈ (0, log 2) (item (1) in Lemma 5.4). Thus

to prove the theorem it remains to estimate the derivative of Φa,t in D2
a,t ∪ D3

a,t.
Note that in this case ma,t = 2 or 3. The expansion of Φa,t comes from the next
proposition.

Proposition 5.8. There is ρ(a) > 1 such that Φ′a,t(x) > ρ(a) for every x ∈
D3
a,t ∪D2

a,t.

Proof. We need the following lemma.

Lemma 5.9. Let x ∈ Dma,t

a,t . Then Φ′a,t(ga(da,t)) ≥ (ea − 1)−2 > 1.

Proof. Let ma,t = m and note that ga(da,t) ∈ Dm
a,t. By the monotonicity of g′a it is

enough to see that Φ′a,t(ga(da,t)) > 1. To see why this is so define

d′a,t
def
= Γma,t(ga(da,t)) = gma ◦ g1,t ◦ gn+1

a (da,t) ' ema (1− e−a) (1 + µ) tn, (5.9)

where the last identity follows from gn+1
a (da,t) ' 1/2 − e−a t (this follows from

gna (da,t) = 1/2− t) and hence g1,t ◦ gna (ga(da,t)) ' (1− e−a) t.
On the other hand, by equations (4.5), (5.6), and (5.9)(

Γja,t

)′
(d′a,t) ' ej a

t2n
e2 ` a (1− e−a)2(1 + µ)2t2n

=
ej a

e2 ` a(1− e−a)2(1 + µ)2
.

This identity, Lemma 5.6, and r = r(ga(da,t)) ≥ m (definition of m = ma,t), imply
that

Φ′a,t(ga(da,t)) = (Γra,t)
′(d′a,t) (Γma,t)

′(ga(da,t)) ≥
ema e(m−2) a (1 + µ)2

e2ma(1− e−a)2(1 + µ)2
.

For m = 2 or 3 we get

Φ′a,t(ga(da,t)) ≥
1

e2 a (1− e−a)2
=

1

(ea − 1)2
> 1.

This ends the proof of the lemma. �
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We are now ready to conclude the proof of the proposition. If D2
a,t = ∅ the propo-

sition follows immediately from Lemma 5.9 and (ea − 1)−2 > 1 for a ∈ (0, log 2).

If D2
a,t 6= ∅ then ma,t = 2 and a > log 1+

√
5

2 (see item (2) in Lemma 5.4). The

expansion for points in D2
a,t follows from Lemma 5.9. For points in D3

a,t note that

item (2) in Lemma 5.6 implies that
(
Φa,t

)′
(x) ≥

(
Γ3
a,t

)′
(x) > τ(a) > 1.

To conclude the proof in this case just take ρ(a) = min{τ(a), (ea−1)−2} > 1. �

The theorem follows taking κ(a) = min{ea, ρ(a)} > 1. �

5.5. Expanding returns for a ∈
[

log 2, log 3+
√

5
2

)
close to (tn(a))−. For a ∈[

log 2, log 3+
√

5
2

)
we select values of µ such that for every n big enough and every

t = (1 + µ) tn(a) the following properties hold:

(i) ma,t = 2 (i.e. D1
a,t = ∅ and D2

a,t 6= ∅) and (ii) Γ2
a,t(ga(da,t)) 6∈ D2

a,t.

We will select parameters (a, t) where the map Φa,t is uniformly expanding (see
Theorem 5.12).

Given a > log 2, take ν(a) as in Lemma 5.5 and recall the definition of In(ν(a))
in (5.5). Then (i) and (ii) hold for t ∈ In(ν(a)) and n ≥ n0(a).

Lemma 5.10. There is a continuous map ξ :
[

log 2, log 3+
√

5
2

)
→ (e−a/2 − 1, 0)

with ξ(a)→ 0 as a→ log 3+
√

5
2 such that

Γ2
a,t(ga(da,t)) ∈

⋃
i≥3

Di
a,t

for all t = tn(a)(1 + µ) ∈ In(a) with 1 + µ < 1 + ξ(a) and n big enough.

Recalling the definition of ra,t(x) = r(x) for x ∈ Dma,t

a,t = D2
a,t (i.e., Γ2

a,t(x) ∈
D
r(x)
a,t ) this lemma immediately implies the following:

Corollary 5.11. For every t = tn(a)(1 + µ) ∈ In(a) with 1 + µ < 1 + ξ(a) and n
big enough it holds ra,t(x) ≥ 3 for every x ∈ D2

a,t.

Proof of Lemma 5.10. We need to select parameters such that Γ2
a,t(ga(da,t)) < d2

a,t.
Arguing as in the proof of Lemma 5.3 and recalling the approximation of ga(da,t)
in (4.13) we get

Γ2
a,t(ga(da,t)) ' Γ2

a,t

(
ea tn
1 + µ

)
' e2 a

(
(1 + µ) tn −

t2n
ea tn
1+µ

)
=

= ea tn (1 + µ) (ea − 1).

(5.10)

Recalling the definition of d3
a,t and Lemma 5.3 it is enough to see that

ea tn (1 + µ) (ea − 1) < tn
e2 a (1 + µ)

e2 a (1 + µ)2 − 1
⇐⇒ (ea − 1) <

ea

e2 a (1 + µ)2 − 1
.

Note that for 1+µ = e−a/2 this inequality is equivalent to (ea−1)2 < ea that holds

for all a ∈
[

log 2, log 3+
√

5
2

)
. We define a continuous map ξ(a) :

[
log 2, log 3+

√
5

2

)
→(

e−a/2 − 1, 0
)

such that

(ea − 1) <
ea

e2 a (1 + µ)2 − 1
for every µ with e−a/2 < 1 + µ < 1 + ξ(a).
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By definition, ξ(a) → 0 as a → log((3 +
√

5)/2. The proof of the lemma is now
complete. �

Define the map η(a)
def
= min{ν(a), ξ(a)}, where ν and ξ are defined in Lem-

mas 5.10 and 5.5.

Theorem 5.12 (Expanding induced map Φa,t). Consider a ∈
(

log 2, log 3+
√

5
2

)
and

µ ∈ (e−a/2, 1+η(a)). Then for every n sufficiently big and t = tn(a) (1+µ) ∈ In(a)
there is κ(a, t) > 1 such that (Φa,t)

′(x) > κ(a, t) for all x ∈ Da,t.

Proof. We now estimate the derivative of Φa,t. The result for points in the com-
plement of D2

a,t follows exactly as in Theorem 5.7 (see equation (5.8) that does not

depend on the choice of a). We now consider points x ∈ D2
a,t. As in previous cases,

it is enough to estimate the derivative in ga(da,t). From (4.13) and (4.5) we get

(
Γ2
a,t

)′
(ga(da,t)) ' e2 a (gna )′

(
ea tn
1 + µ

)
= e2 a

(
tn
ea tn
1+µ

)2

= (1 + µ)2. (5.11)

Arguing as in Lemma 5.3 we get

Γ2
a,t(ga(da,t)) ' Γ2

a,t

(
ea tn
1 + µ

)
' e2 a

(
(1 + µ) tn −

t2n
ea tn
1+µ

)
=

= ea tn (1 + µ) (ea − 1).

(5.12)

Using (5.10), for r ≥ 3 we have that6(
Γra,t

)′(
Γ2
a,t(ga(da,t)

)
'
(
Γra,t

)′(
ea tn (1 + µ) (ea − 1)

)
'

' er a (gna )′
(
ea tn (1 + µ) (ea − 1)

)
≥

≥ e3 a

(
tn

ea tn (1 + µ) (ea − 1)

)2

=

=
ea

(1 + µ)2 (ea − 1)2
.

(5.13)

Consider x ∈ D2
a,t. By Corollary 5.11 we have that r(x) = r ≥ 3. Equations (5.11)

and (5.13) imply that

(Φa,t)
′(x) ≥

(
Γra,t

)′(
Γ2
a,t(ga(da,t)

) (
Γ2
a,t

)′
(ga(da,t) ≥

≥ ea

(1 + µ)2 (ea − 1)2
(1 + µ)2 =

ea

(ea − 1)2

def
= τ(a) > 1,

where the last inequality follows from a ∈
[

log 2, log 3+
√

5
2

)
. This completes the

proof of the theorem. �

5.6. Expanding returns for a ∈
[

log 2, log 3+
√

5
2

)
close to (tn(a))+. In the

previous two subsections we have constructed expanding returns for parameters
such that D1

a,t = ∅. In this section we consider the case when D1
a,t 6= ∅. Recall that

item (3) of Lemma 5.4 implies that D1
a,tn(a) 6= ∅ every a > log 2 and every n large

enough. Note also that Lemma 5.5 implies that we must consider parameters close

to t+n (a) since otherwise D1
a,t = ∅ (recall that a ∈

[
log 2, log 3+

√
5

2

)
).

6Here there is a slight abuse of notation, if Γ2
a,t(ga(da,t) 6∈ Dra,t we consider the extension of

this map given by gra ◦ g1,t ◦ gna : [0, 1/2]→ R.
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Γ
(1,0)
t

Figure 6. ma,tn(a) = 1.

Lemma 5.13. Consider a ∈
[

log 2, log 3+
√

5
2

)
and n sufficiently big. Then

Γ1
a,tn(a)(ga(da,tn(a)) 6∈ D1

a,tn(a).

Proof. Fix a and write tn = tn(a). To prove the lemma it is enough to see that

Γ1
a,tn(ga(da,tn)) = ga ◦ g1,tn ◦ gna (ga(da,tn) ≤ d1

a,tn . (5.14)

Recall that ga(da,tn) ' ea tn (see (4.13)). Arguing as in the proof of Lemma 5.3,
for sufficiently large n we get

Γ1
a,tn(ga(t)) ' ea

(
tn −

1

2
+

ea tn (1− 2 tn)2

2 ea tn (1− 2 tn)2 + (1− 2 ea tn) (2 tn)2

)
'

' ea
(
1− e−a)

)
tn.

By Lemma 5.3 it is enough to see that for large n

ea
(
1− e−a)

)
tn < K1(0) tn =

ea

(ea − 1)
tn.

This inequality is equivalent to

1− e−a < (ea − 1)−1 ⇐⇒ e2 a − 3 ea < −1.

The lemma now follows from a ∈
[

log 2, log 3+
√

5
2

)
. �

Lemma 5.13 implies that ra,n(x) = r(x) ≥ 2 for every x ∈ D1
a,tn(a), recall that

r(x) is given by the condition Γ1
a,tn(a)(x) ∈ Dr(x)

a,tn(a).

Theorem 5.14 (Expanding induced map Φa,tn(a)). Let a ∈
[

log 2, log 3+
√

5
2

)
.

Then for every n big enough

(1) either Γ1
a,tn(a)(ga(tn(a)) = d1

a,tn and then Φ′a,tn(ga(tn)) = 1;

(2) or there is κn(a) > 1 such that (Φa,tn(a))
′(x) > κn(a) for all x ∈ Da,tn(a).

For t close enough to tn(a)−, t < tn(a), we can define the induced return map
Φa,t as above and obtain the following:

Corollary 5.15. Let a ∈
[

log 2, log 3+
√

5
2

)
and big n such that Γ1

a,tn(a)(ga(tn(a)) 6=
d1
a,tn . Then there are κ̄n(a) > 1 and αn(a) > 0 such that (Φa,t)

′(x) > κ̄n(a) for all
x ∈ Da,t and t ∈ [tn(a)− αn(a), tn(a)].
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Proof of Theorem 5.14. For simplicity write tn = tn(a). There are three possibil-
ities for a point x ∈ Da,tn : (i) x ∈ D3

a,tn with j ≥ 3, (ii) x ∈ D2
a,tn , and (iii)

x ∈ D1
a,tn . In Case (i), by Lemma 5.6, Φ′a,tn(x) ≥ ea > 1.

We now consider Case (ii). Note that by symmetry of ga, if x ∈ (0, 1/2) and
k ≥ 0 satisfy gka(x) = 1/2 − x then (gka)′(x) = 1 and if gka(x) < 1/2 − x then
(gka)′(x) > 1. This fact and gn+2

a (g−1
a (tn)) = 1/2− g−1

a (tn) (definition of tn) imply

(gna )′(ga(tn)) (g2
a)′(g−1

a (tn)) = 1, (gna )′(ga(tn)) =
1

(g2
a)
′
(g−1
a (tn))

. (5.15)

Lemma 5.16. For every tn sufficiently small there is τn = τn(a) > 1 such that(
Γ2
a,tn

)′
(x) ≥ τn for all x ∈ D2

a,tn .

Proof. If x ∈ D(2,0)
a,tn then g1,tn ◦ gna (x) < g−1

a (tn). Thus, by the monotonicity of g′a,

(g2
a)′(g1,tn ◦ gna (x)) > (g2

a)′(g−1
a (tn)).

Since x < ga(tn) (recall item 3 in Lemma 5.4), the previous inequality, the mono-
tonicity of g′a, and (5.15) imply that(

Γ2
a,tn

)′
(x) > (g2

a)′(g1,tn ◦ gna (x)) (gna )′(ga(tn)) ≥ (g2
a)′(g−1

a (tn))

(g2
a)′(g−1

a (tn))
= 1.

This concludes the proof of the lemma �

To conclude the proof of the theorem it remains to consider points in D1
a,tn . It

is enough to prove the following lemma:

Lemma 5.17. For every x ∈ D1
a,tn it holds Φ′a,tn(x) ≥ 1. Moreover,

(1) Φ′a,tn(x) > 1 for every x 6= ga(tn);

(2) Φ′a,tn(ga(tn)) ≥ 1 and Φ′a,tn(ga(tn)) = 1 if, and only if, Γ1
a,tn(ga(tn)) =

d1
a,tn .

Proof. We need to estimate derivatives of compositions
(
Γra,tn ◦ Γ1

a,tn(a)

)′
(x) with

x ∈ D1
a,tn and r ≥ 2. Since these derivatives are lower bounded by the minimum

of
(
Γ2
a,tn ◦ Γ1

a,tn(a)

)′
it is enough to estimate this last derivative. Note that

Γ1
a,tn(ga(tn)) ≤ d1

a,tn and Γ2
a,tn

(
d1
a,tn

)
= ga(tn).

The monotonicity of ga implies that

Γ2
a,tn ◦ Γ1

a,tn(ga(tn)) ≤ Γ2
a,tn

(
d1
a,tn

)
= ga(tn).

Consider now the auxiliary map ha,tn defined by

ha,tn(x)
def
= g1,tn ◦ gn+1

a (x). (5.16)

Using the map ha,tn we get

g2
a ◦ h2

a,tn(tn) ≤ ga(tn). (5.17)

This implies that

h2
a,tn(tn) ≤ g−1

a (tn) and ha,tn(tn) ≤ (ha,tn)−1(g−1
a (tn)), (k ≥ 1). (5.18)

From (5.15), h2
a,tn(tn) ≤ g−1

a (tn), and the monotonicity of g′a we get

(g2
a)′(h2

a,tn(tn)) ≥ (g2
a)′(g−1

a (tn)) =
(
(gna )′(ga(tn))

)−1
. (5.19)
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We now write the equality in (5.17) as follows

Γ2
a,tn ◦ Γ1

a,tn(ga(tn)) = g2
a ◦ h2

a,tn(tn) = g2
a ◦ ha,tn ◦ g1,tn ◦ gna (ga(tn)).

From (5.19) we get(
Γ2
a,tn ◦ Γ1

a,tn

)′
(ga(tn)) = (g2

a)′
(
h2
a,tn(tn)

)
(ha,tn)′

(
ha,tn(tn)

)
(gna )′

(
ga(tn)

)
≥

≥ (g2
a)′
(
g−1
a (tn)

)
(ha,tn)′

(
ha,tn(tn)

)
(gna )′

(
ga(tn)

)
=

≥ (ha,tn)′
(
ha,tn(tn)

)
,

where this inequality is not strict if, and only if, Γ
(1,0)
a,tn (ga(tn)) = d

+,(2,0)
a,tn .

Thus to prove the lemma it is enough to see that

Claim 5.18. (ha,tn)′
(
ha,tn(tn)

)
≥ 1.

Proof. We have the following:

• ha,tn(tn) ≤ h−1
a,tn(g−1

a (tn)) (see (5.18));

• (g2
a)′(h2

a,tn(tn)) ≥
(
(gna )′(ga(tn))

)−1
(see (5.19)); and

• Arguing as in the proof of (5.15) one gets

h′a,tn(ha,tn(tn)) =
(
h′a,tn(h−1

a,tn(g−1
a (tn)))

)−1
.

Using the monotonicity of the derivative of ha,tn and putting together these in-
equalities we get

h′a,tn(ha,tn(tn)) ≥ h′a,tn(h−1
a,tn(g−1

a (tn)) =
(
h′a,tn(ha,tn(tn))

)−1
.

This implies that (h′a,tn(ha,tn(tn)))2 ≥ 1. Therefore, as (ha,tn(a))
′ > 0 we get

h′a,tn(ha,tn(tn)) ≥ 1, ending the proof of the claim. �

The proof of Lemma 5.17 is now complete. �

The proof of Theorem 5.14 is now complete. �

5.7. Covering properties for expanding returns.

Definition 5.19 (Expanding pair of parameters). We say that (a, t) is an expanding
pair of parameters if Φa,t satisfies the hypotheses either in Theorem 5.7, or in
Theorem 5.12, or in Corollary 5.15.

Proposition 5.20 (Covering property). Let (a, t) an expanding pair of parameters
with t ∈ In(a) = (tn+1(a), tn(a)]. Then for every open interval ∅ 6= U ⊂ Da,t there
are k (arbitrarily large), i, and x ∈ U such that

g1,t ◦ gn−1
a ◦ Γia,t ◦ Φka,t(x) = 0.

Recalling the definition of Φa,t we get the following:

Corollary 5.21. Let (a, t) an expanding pair of parameters with t ∈ In(a) =
(tn+1(a), tn(a)]. Then for every open set U 6= ∅ ⊂ Da,t there are arbitrarily large
r, a sequence of pairs (nr, `r) . . . (n1, `1), and x ∈ U such that

g1,t ◦ gn−1
a ◦ Γ

(nr,`r)···(n1,`1)
a,t (x) = 0.
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Γ
(1,0)
t

Γ
(2,0)
t s+

tn

s?tn

s−tn

Figure 7. The maps Γ
(i,0)
t .

Proof of Proposition 5.20. Let κ > 1 an expansion constant of Φa,t (i.e., (Φa,t)
′(x) >

κ for all x ∈ Da,t). By Remark 5.2 it is enough to see that there is ` such that
Φ`a,t(U) contains a discontinuity of Φa,t. If this is not the case then Φ`a,t(U) is

contained in an interval where Φa,t is continuous and therefore |Φ`a,t(U)| > κ` |U |.
Since the intervals of continuity of Φa,t are bounded this is a contradiction. �

6. Full hyperbolic dynamics for a =∞

In this section we consider parameters a > log 4 and their associated parameter
intervals (tn+1(a), tn(a)], (large n). The main result in this section is Proposi-
tion 6.4, to state it we need a preliminary result. Consider the parameter

t?n(a) = t?n
def
=

2 tn(a)

(1− 2 tn(a))e
a
2 + 2 tn(a)

∈ (tn+1(a), tn(a)). (6.1)

In what follows, the parameter a > log 4 remains fixed and thus it will be omitted
(although in some cases we will keep a for clearness).

Lemma 6.1 (Saddle-node bifurcations). For every t ∈ (t?n, tn) the map Γ
(1,0)
t has a

pair of fixed points s−t (expanding) and s+
t (contracting) in D1,0

t , s−t < s+
t , colliding

to a saddle-node st?n = s−t?n = s+
t?n

for t = t?n:

Γ
(1,0)
t?n

(st?n) = st?n and
(
Γ

(1,0)
t?n

)′
(st?n) = 1;

Γ
(1,0)
t (s+

t ) = s+
t and

(
Γ

(1,0)
t

)′
(s+
t ) ∈ (0, 1), if t ∈ (t?n, tn);

Γ
(1,0)
t (s−t ) = s−t and

(
Γ

(1,0)
t

)′
(s−t ) > 1, if t ∈ (t?n, tn).

Proof. To prove the first part of the lemma, for t ∈ [t?n, tn) define the map

ht : g
−1
t (Dt) ∪Dt → [0, 1/2], ht(x) = g1,t ◦ gn+1

a (x).

Claim 6.2. The point

z?n
def
=

tn
(1− 2 tn)e

a
2 + 2 tn

∈ g−1
a (Da,t?n

).

is a saddle-node fixed point of ht?n .

Proof. From equations (4.1) and (4.3) we get

g1,tn ◦gn+1
a (z?n) =

1− 2 tn
2 (1− 2 tn) + 4 tn e−

a
2
− 1

2
+ tn =

tn
(
− 1 + (1− 2 tn)e

a
2 + 2 tn

)
(1− 2 tn)e

a
2 + 2 tn

.
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After a straightforward calculation we get ha,t?n(z?n) = z?n.
Another simple calculation using (4.1) implies that for t ∈ (tn+1, tn) it holds

(ht)
′(z?n) = (g1,tn ◦ gn+1

a )′(z?n) = (gn+1
a )′(z?n) = 1,

ending the proof of the claim. �

Note that the map t 7→ ht(z
?
n) is increasing and thus ht(z

?
n) > z∗n for t ∈ (t?n, tn).

Since h′t is strictly decreasing, for t ∈ (t∗n, tn) the map ht has a pair of fixed points
z−t (expanding) and z+

t (contracting) with z−t < z+
t . Let

s±t
def
= ga(z±t ) for t ∈ (t?n, tn) and st?n

def
= ga(z?n).

Note that ht(Dt) is at the left of Dt, thus we have that ht(dt) < dt. Thus from
ht(zt?n) > zt?n we get that z+

t ∈ (zt?n , dt) ⊂ g
−1
a (Dt). These observations imply that

s+
t ∈ Dt and thus s+

t ∈ D
(1,0)
t .

We consider the (natural) extension of Γ
(1,0)
t to Dt and, with a slight abuse of

notation, denote it also by Γ
(1,0)
t . Note that by definition

Γ
(1,0)
t (s±t ) = ga ◦ g1,t ◦ gna (s±t ) = ga ◦ g1,t ◦ gn+1

a (z±t ) = ga ◦ ht(z±t ) = ga(z±t ) = s±t .

A similar property holds for st?n .

The fact that s−t ∈ D
(1,0)
t follows from Γ

(1,0)
t (d

−,(1,0)
t ) ≤ d−,(1,0)

t .

The fact that s−t is expanding and s+
t is contracting for Γ

(1,0)
t , t ∈ (t?n, tn), follows

from the similar properties for z−t and z+
t for ht above. A similar argument implies

that st?n is a saddle-node for Γ
(1,0)
t?n

. This completes the proof of the lemma. �

For small t > 0 consider the set of hyperbolic parameters7 in [0, t] defined by

Ha(t)
def
= [0, t] ∩

(⋃
n

(t?n(a), tn(a))
)
. (6.2)

Lemma 6.3 (Density of hyperbolic parameters).

lim inf
t→0+

|Ha(t)|
t

≥ h(a) > 0, where h(a)→ 1 as a→∞.

Proof. Recalling the relation between tn(a) and tn+1(a) in (4.3) and the definition
of t?n(a) in (6.1) it follows

lim
n→+∞

tn(a)− t?n(a)

tn(a)− tn+1(a)
= lim
n→+∞

tn(a)
(

1− t?n(a)
tn(a)

)
tn(a)

(
1− tn+1(a)

tn(a)

) =
e

a
2 − 2

e
a
2 − 1

def
= h(a).

It is obvious that h(a)→ 1 as a→∞. �

To state the next result we need a definition. A point x ∈ Da,t has a return of

type (i, j) if x ∈ D(i,j)
a,t , i.e., Γ

(i,j)
a,t (x) ∈ Da,t. Note that a point have infinitely many

different types of returns.

Proposition 6.4 (Contracting and expanding returns). For every n sufficiently
big and every t ∈ [t∗n, tn) consider the points s−t , s+

t , and st?n in Lemma 6.1 and the
associated partition of the fundamental domain Dt of ga given by

Lut =
[
dt, s

−
t

]
, Lct =

(
s−t , s

+
t

)
, and Lst =

[
s+
t , ga(dt)

]
7Proposition 6.4 justifies this name
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(note that Lct?n is empty). This partition satisfies the following invariance and ex-

pansion/contraction properties for parameters t ∈ [t?n, tn):

The contracting and trapping region Lst :

(s1) Every return of a point of Lst to Dt is of type (1, r) for some r ≥ 0 and

Γ
(1,r)
t (Lst ) ⊂ Lst for every r ≥ 0;

(s2) if t ∈ (t?n, tn) there is λt ∈ (0, 1) such that 0 <
(
Γ

(1,r)
t

)′
(x) < λt for all

x ∈ Lst ∩D
(1,r)
t and r ≥ 0;

(s3) 0 < (Γ
(1,r)
t?n

)′(x) < 1 for all x ∈ Lst?n ∩D
(1,r)
t?n

with x 6= st?n and Γ
(1,0)
t?n

)′(s∗tn) = 1;

(s4) Γ
(1,k)
t (Dt) ⊂ Lst for all k ≥ 1.

The wandering region Lct :

(w1) Every return of a point of Lct to Dt is of type (1, r), r ≥ 0. Moreover,

Γ
(1,0)
t (Lct) = Lct and Γ

(1,0)
t (x) > x for all x ∈ Lct .

The expanding region Lut :

(u1) Every return of a point of Lut to Dt is of type (r, 0) with r ≥ 1 or (1, j) with
j ≥ 1;

(u2) if t ∈ (t?n, tn) there is σt > 1 such that
(
Γ

(r,0)
t

)′
(x) > σt for all x ∈ Lut ∩D

r,0
t

and r ≥ 0;

(u3) (Γ
(1,r)
t?n

)′(x) > 1 for all x ∈ Lut?n ∩D
(0,r)
t?n

with x 6= st?n and Γ
(1,0)
t?n

)′(s∗tn) = 1.

Remark 6.5 (Coding orbits). Using Proposition 6.4 we code the forward orbits of

points in Dt by the IFS Γ
(i,j)
t : D

(i,j)
t → Dt. To each x ∈ Dt and each orbit of it we

associate a sequence (ji)i≥0, ji ∈ {s, c, u}, as follows: write x = x0 and list xi ∈ Dt

the successive iterates of x by the IFS, if xi ∈ Lkt we let ji = k. By Proposition 6.4,
if ji = s then j` = s for all ` ≥ i and if ji = c then j` ∈ {s, c} for all ` ≥ i.

Proof of Proposition 6.4. To prove the assertions for the interval Lst note that

Γ
(1,0)
t (Lst ) =

[
Γ

(1,0)
t (s+

t ),Γ
(1,0)
t (ga(dt))

]
⊂ [s+

t , ga(dt)] = Lst .

For r ≥ 1 the set Γ
(1,r)
t (Dt) is at the right of Γ

(1,0)
t (Lst ) and contained in Dt, thus

Γ
(1,r)
t (Dt) ⊂ Lst , for all t ∈ [t∗n, tn) and r ≥ 1.

This proves the inclusion property in (s1) and the trapping property (s4).
To see the first part of (s1) (points of Lst have only returns of type (1, r)) note

that if i ≥ 2 then for every j one has

Γ
(i,j)
t (x) ≥ Γ

(2,0)
t (x) ≥ ga(s+

t ) > ga(dt),

thus Γ
(i,j)
t (x) 6∈ Dt. This prevents points in Lst to have returns of type (i, j) with

i ≥ 2. This completes the proof of (s1).
To get (s2) note that the monotonicity of the derivatives implies that if x ∈ Lst

then
0 <

(
Γ

(1,r)
t

)′
(x) ≤ (Γ

(1,0)
t

)′
(s+
t ) = λt < 1.

To obtain (s3) one argues similarly, obtaining 0 <
(
Γ

(1,r)
t∗n

)′
(x) ≤ (Γ

(1,0)
t?n

)′
(st?n) =

1, where the equality only holds for x = s?tn
This ends the proof of claims concerning the contracting and trapping region.
The proofs of the assertions for the regions Lct an Lut (conditions (w1) and (u1)–

(u3)) follow similarly and are omitted. �
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7. Dynamics of the maps Ga,t in a neighborhood of the cycle

We consider a neighborhood of the cycle associated to the points P =
(
0Z; 1/2

)
(contracting) and Q =

(
0Z; 0

)
(expanding) of Ga,t (see (2.1)) for t = 0. We study

the dynamics of Ga,t in such a cycle. This analysis relies on the results about the
iterated function systems in Sections 5 and 6, see Proposition 7.10 and Remark 7.13.

We use the cylinder notation for compositions of the maps ga and g1,t,

g[ξ0...ξm],a,t
def
= gξm,t ◦ · · · ◦ gξ0,t, where g0,t = ga and ξi ∈ {0, 1}.

Given r,m ≥ 0, the cylinder [ξ−r · · · . ξ0 · · · ξm] is the subset of Σ2 given by

[ξ−r · · · . ξ0 · · · ξm]
def
=
{

(ηi)i∈Z : ηi = ξi for all i ∈ {−r, . . . ,m}
}
.

These cylinders define a basis of the topology of Σ2.

7.1. Choice of a neighborhood of the cycle. Consider the heteroclinic set

γ = {0Z} × (0, 1/2) ⊂Wu(Q,Ga,t) ∩W s(P,Ga,t), for all a, t

and the (ε, k)-neighborhood of its closure given by

V ε,k[0,1/2]

def
=
[
0−k.0k

]
×
(
−ε, 1

2
+ ε

)
. (7.1)

Consider the point

Z
def
=
(

(0−N.10N); 1/2)
)
.

By Corollary 3.1,

Z =
(

(0−N.10N); 1/2)
)
∈Wu(P,Ga,0) ∩W s(Q,Ga,0).

Note also that
{G`+1

a,0 (Z), G−`a,0(Z), ` ≥ k} ⊂ V ε,k[0,1/2].

Pick small δ = δ(a) ∈ (0, ε) and t0 = t(a) ∈ (0, ε) such that for all t ∈ [0, t0] it holds(
g−ka ([1/2− δ, 1/2 + δ])

)⋃(
gk+1
a ◦ g1,t([1/2− δ, 1/2 + δ])

)
⊂ (0− ε, 1/2 + ε)

and consider the neighborhood of Z defined by

V δ,kZ
def
=
[
0−2k−2.102k+1

]
×
(

1

2
− δ, 1

2
+ δ

)
. (7.2)

These choices imply that for every t ∈ [0, t0] one has

closure
(
Gk+1
a,t (V δ,kZ ) ∪G−k−1

a,t (V δ,kZ )
)
⊂ V ε,k[0,1/2].

Remark 7.1 (Choice of parameters). We can assume that t(a) > 0, ε, and δ are
small enough satisfying

g2
1,t(1/2) = 2 t− 1/2 < −ε and t+ da,t < 1/2− ε, for all t ∈ [0, t(a)].

Finally, consider the (δ, k, ε)-neighborhood of the cycle8 given by

V δ,ε,k
def
= V ε,k[0,1/2] ∪

(
k+1⋃
i=−k

Gia,0(V δ,kZ )

)
. (7.3)

8This set contains the elements in the cycle: the two fixed points P and Q and the orbits of
the heteroclinic point Z and the heteroclinic connexion γ.
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From now on δ, ε, k will remain fixed and they will be omitted, thus we will use

the notation V
def
= V δ,ε,k, VZ

def
= V δ,kZ , and V[0,1/2]

def
= V ε,k[0,1/2]. In what follows we

study the dynamics of Ga,t, small t, in the neighborhood V of the cycle.
Relevant sets in our context are the maximal invariant sets of Ga,t in the set V

Λ+
a,t

def
=
⋂
i≤0

Gia,t(V ), Λ−a,t
def
=
⋂
i≥0

Gia,t(V ), Λa,t
def
= Λ+

a,t ∩ Λ−a,t. (7.4)

We also consider the non-wandering set of Ga,t relative to V denoted by Ωa,t. A
point X ∈ V belongs to Ωa,t if for every neighborhood U ⊂ V there are Y ∈ U and

j > 0 such that Gja,t(Y ) ∈ U and the segment of orbit Y, . . . , Gja,t(Y ) is contained
in V . Note that Ωa,t ⊂ Λa,t.

Remark 7.2. If X = (ξ;x) ∈ V then x ∈ [−ε, 1/2 + ε].

We close this subsection with the following consequence of Corollary 3.1.

Remark 7.3. Consider a finite sequence α = α1 . . . αm such that

(g[αm−i...αm],a,t)
−1(0) ∈ [0, 1/2) for all i = 0, . . . ,m− 1.

Then Yα =
(
(0−Nα1 . . . αm.0

N); 0
)

is a homoclinic point of Q contained in Λa,t.

7.2. A reference domain and its returns. Given X = (ξ;x) ∈ Λa,t, for i ≥ 1
we write

Xi
def
= Gia,t(X)

def
=
(
σi(ξ); g[ξ0...ξi−1],a,t(x0)

)
= (σi(ξ);xi).

Recall the definition of the fundamental domain Da,t = (da,t, ga(da,t)] ⊂ [t, 1/2)
of ga, see (4.7) and (4.11), and consider its associated reference cube ∆a,t

∆a,t
def
=
[
0−k.0k

]
×Da,t = {X = (ξ;x) ∈ V : x ∈ Da,t} ⊂ V. (7.5)

To study of the relative dynamics of Ga,t in V we analyze the returns of points
in ∆a,t to ∆a,t.

Definition 7.4 (Returns to ∆a,t). Let X ∈ ∆a,t. The sequence of return times

%i(X) ofX to ∆a,t, %i(X) < %i+1(X), is defined as follows: %0(X) = 0, G
%j(X)
a,t (X) ∈

∆a,t, and Gia,t(X) ∈ (V \∆a,t) for every i ∈
(
%j−1(X), %j(X)

)
∩ N.

We let X[i]
def
= X%i(X) = G

%i(X)
a,t (X) the i-th return to ∆a,t of X and I(X) the

maximal interval in Z such that %i(X) is defined for i ∈ I(X).

Note that the sequence of return times of a point X may be finite and that if
%i(X) > 0 (resp. < 0) is defined then Gja(X) ∈ V for all 0 ≤ j ≤ %i(X) (resp.
%i(X) ≤ j ≤ 0).

Next proposition claims that “most” points of Λa,t have iterates in ∆a,t.

Proposition 7.5. Consider any t ∈ (0, t(a)]. Then every X ∈ Λa,t \ {P,Q}, has
some iterate by Ga,t in ∆a,t.

To prove this proposition we need two preparatory lemmas.

Lemma 7.6. Consider small t > 0 and X = (ξ;x) ∈ V such that X0, . . . , Xi ∈ V
for some i ≥ 0. If gia(x) ∈ [0, 1

2 + t− ε) then ξ0 = · · · = ξi−1 = 0.

Proof. Note that [0, 1
2 +t−ε] ⊂ [0, 1

2 ). As ga(x) ≥ x for all x ∈ [0, 1/2] and ga(0) = 0

one has that gja(x) ∈ [0, 1
2 +t−ε) for all j = 0, . . . , i. Assume, by contradiction, that

there is a first j ∈ {0, . . . , i−1} with ξj = 1. Then g1,t◦gja(x) < g1,t(
1
2 +t−ε) = −ε.

This implies that Xj+1 6∈ V , a contradiction. �
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Lemma 7.7. Consider t ∈ (0, t(a)) and X = (ξ;x) ∈ Λa,t. Then xi ∈ [0, 1/2] for
every i ∈ Z.

Proof. By Remark 7.2 the second coordinate xi of Xi satisfies xi ∈ [−ε, 1/2 + ε].
Thus, after replacing X by some iterate, we can assume that x0 = xi ∈ [−ε, 1/2+ε].

We claim that x0 6∈ [−ε, 0). Arguing by contradiction, assume that x0 ∈ [−ε, 0).
If ξi = 0 for all i ≥ 0 then there is m ≥ 0 with xm+1 = g[ξ0...ξm],a,t(x0) =

gm+1
a (x0) < −ε, contradicting Remark 7.2. Thus there is a first m ≥ 0 with
ξm = 1. Then

xm+1 = g[ξ0...ξm],a,t(x0) = g1,t ◦ gma (x0) < g1,t(0) = t− 1/2 < −ε,
contradicting Remark 7.2.

The case x0 ∈ (1/2, 1/2 + ε] follows identically considering negative iterates. �

Proof of Proposition 7.5. Consider X = (ξ;x) ∈ Ωa,t \ {P,Q}. By Lema 7.7, x ∈
[0, 1/2]. We first consider the case x ∈ (0, 1/2). If the sequence ξ = 0Z we are done
since gia(x) → 1/2 as i → +∞ and gia(x) → 0 as i → −∞ and thus the sequence
(gia(x))i∈Z necessarily contains some point in the fundamental domain Da,t of ga
in (0, 1/2). Thus it remains to consider the case where ξ contains some 1. After
replacing X by some iterate we can assume that ξ0 = 1. As {g1,t(x), x} ⊂ [0, 1/2]
we have g1,t(x) = x1 ∈ [0, t] ⊂ [0, da,t], recall (4.11). If ξi = 0 for all i ≥ 1 then
there is j ≥ 1 with xj+1 = gja(x1) ∈ (da,t, ga(da,t)] = Da,t. Thus as Xj+1 ∈ V and
by the definition of ∆a,t one has that Xj+1 ∈ ∆a,t.

We are left to consider the case where there is a first j ≥ 1 with ξj = 1.

Claim 7.8. xj = gj−1
a (x1) > da,t

Proof. If the claim does not hold, by Remark 7.1 we have

xj+1 = g1,t ◦ gj−1
a (x1) ≤ g1,t(da,t) ≤ da,t + t− 1/2 < −ε,

contradicting Lemma 7.7. �

Since x1 ∈ [0, t] ⊂ [0, da,t] Claim 7.8 implies that xi ∈ Da,t for some i ≤ j and
thus Xi ∈ ∆a,t. This completes the proof of the lemma when x ∈ (0, 1).

We now consider the case x = 1/2. As X 6= P this implies that the sequence ξ
contains some 1. Since g1,t(x) 6= 1/2 for all x ≤ 1/2, one has that ξ− consists only
of 0’s. Thus there is a first j > 0 with ξj = 1. Then

xj+1 = g[ξ0...ξj ],a,t = g1,t ◦ gja(1/2) = g1,t(1/2) = t ∈ (0, 1/2).

Thus we are in the previous case and we are done.
The case x = 0 is analogous and thus omitted. The proof of the proposition is

now complete. �

One can easily prove the following version of [DR1, Lemma 7.1] straightforwardly
adapted to our setting.

Lemma 7.9. Consider small t > 0. Given X ∈ ∆a,t ∩ Λa,t the following holds:

(1) X ∈ W s(P,Ga,t) ∪W s(Q,Ga,t), if and only if, X has only finitely many
forward returns %i(X), i > 0;

(2) X ∈ Wu(P,Ga,t) ∪Wu(Q,Ga,t), if and only if, X has only finitely many
backward returns %i(X), i < 0; and

(3) X has infinitely many forward and backward returns %i(X).
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7.3. Itineraries and return maps. In this section, we associate an itinerary to
points in ∆a,t having returns to ∆a,t (Proposition 7.10) and determine the fiber

dynamics of these returns in terms of the maps Γ
(i,j)
a,t in Section 4.2 (Remark 7.13).

Proposition 7.10. Let t ∈ (tn+1(a), tn(a)]. Consider X = (ξ;x) ∈ ∆a,t with a
sequence of forward returns %i(X) to ∆a,t. Then

ξ0ξ1 . . . ξ%i(X)−1 = 0k
−
1 +n10k

−
1 +n+k+2 10k

−
2 +n+k+3 1 . . . . . . 10k

−
i−1+n+k+i 10k

+
i ,

where k−j ≥ 0 and k+
j ≥ 1 for every j = 1, . . . , i.

If X has only i forward returns (i.e., I(X) = {0, . . . , i}) and X ∈ Λ+
a,t then

ξ+ = 0k
−
1 +n10k

+
1 +n+k−2 1 · · · 10k

−
i−1+n+k+i 10∞.

Proof. The first step of the proof is the following lemma.

Lemma 7.11. Let X = (ξ;x) ∈ ∆a,t with a first return %1 = %1(X) to ∆a,t. Then

ξ0 . . . ξ%1−1 = 0k010k1 , where k0 ≥ n and k1 ≥ 1.

Proof. By definition of a first return time, Gia,t(X) ∈ V for all i = 0, . . . , %1.
The monotonicity of ga implies that ξ0 . . . ξ%1−1 6= 0%1 . Thus there are j ≥ 1,
m1, . . . ,mj ≥ 1, k1, . . . , kj−1 ≥ 1, and k0, kj ≥ 0 such that

ξ0 . . . ξ%1−1 = 0k01m10k1 . . . 0kj−11mj0kj .

To see that m1 = 1 note that g[0k01],a,t(x) < g1,t(1/2) = t ≤ da,t. Hence, if
m1 ≥ 2 we have

xk0+2 = g[0k012],a,t(x) < g2
1,t(1/2) = g1,t(t) ≤ g1,t(da,t) < −ε.

By Remark 7.2 this implies that Xk0+2 6∈ V , which is a contradiction.
Note that g[0k01],a,t(x) ≤ da,t implies that k1 ≥ 1.

Claim 7.12. g[0k010k1 ],a,t(x) ∈ Da,t

This claim immediately implies that %1 = 0k010k1 .

Proof of Claim 7.12. Note that g[0k01],a,t(x) ≤ da,t implies that g[0k010k1 ],a,t(x) ≤
ga(da,t), otherwise we get ` < k1 with g[0k010`],a,t(x) ∈ (da,t, ga(da,t)]. Then X has
a return to ∆a,t for k0 + 1 + ` < %1, contradicting that %1 is a first return of X.
Thus g[0k010k1 ],a,t(x) ≤ da,t and ξ0 . . . ξk0+1+k1+1 = 0k010k11. From Remark 7.1 it
follows

xk0+1+k1+1 = g[0k010k11],a,t(x) ≤ g1,t(da,t) < da,t − 1/2 + t < −ε,

contradicting Xk0+1+k1+1 ∈ V . �

It remains to check that k0 ≥ n. Assume, by contradiction, that k0 < n. The
definition of (tn+1(a), tn(a)] implies that if t ∈ (tn+1(a), tn(a)] then g1,t(g

k0
a (x)) ≤ 0.

This implies that the orbit of X must have some iterate outside V before returning
to ∆a,t, contradicting the definition of a first return. This ends the proof of the
lemma. �

In view of Lemma 7.11 we use the following notation

ξ0 . . . ξ%1−1 = 0k
−
1 +n10k

+
1 , k−1 ≥ 0 and k+

1 ≥ 1.



SKEW PRODUCT CYCLES WITH RICH DYNAMICS 29

Concatenating consecutive forward returns and applying recursively Lemma 7.11,
we get

ξ0ξ1 . . . ξ%i(X)−1 = 0k
−
1 +n10k

+
1 +k−2 +n10k

+
2 +k−3 +n1 . . . . . . 10k

−
i +n10k

+
i .

Finally, using the arguments above it is not difficult to see that if X ∈ Λ+
a,t has

only i forward returns then

X = (ξ;x) = (· · · .0k
−
1 +n10k

+
1 +k−2 +n1 · · · 10k

+
i−1+k−i +n10∞;x).

The proof of the proposition is now complete. �

Using Proposition 7.10 to the return %i(X) of X we associate a chain o pairs

ri(X) = ri
def
= (k+

1 , k
−
1 ) · · · (k+

i , k
−
i ), k−i ≥ 0, k+

i ≥ 1.

Using the maps Γ
(i,j)
a,t in (4.9) we get the following:

Remark 7.13 (Returns and the IFS Γ
(i,j)
a,t ). Consider X = (ξ;x) ∈ ∆a,t with an

i-th return %i(X) with associated chain of pairs ri(X) = ri. Then

X[i] = (σ%i(X)(ξ), x[i]), where x[i] = Γri
a,t(x) = Γ

(k+i ,k
−
i )

a,t ◦ · · · ◦ Γ
(k+1 ,k

−
1 )

a,t (x).

7.4. Wandering points.

Proposition 7.14. For every a > log 4 and t ∈ (t∗n(a), tn(a)), large n, it holds

{0Z} × (0, 1/2) ∩ Ωa,t = ∅.

Proof. Let us omit the parameter a. First, recall that by Lemma 6.1 for every
t ∈ (t∗n, tn) there are uniquely defined fixed points s−t , s

+
t ∈ Da,t, s

−
t < s+

t , of the

map Γ
(1,0)
a,t . Given X ∈ {0Z}× (0, 1/2), after replacing it by some backward iterate

we can assume that X = (0Z;x) with 0 < x < s+
t .

Consider the reference cube ∆̂a,t containing ∆a,t defined by

∆̂a,t
def
= {X = (ξ;x) ∈ V with x ∈ [0, ga(da,t)]}.

To complete the proof of the proposition we need the next lemma follows using
arguments similar to the ones in Lemma 7.11, thus we just sketch its proof.

Lemma 7.15. Consider Y = Y0 = (η; y) ∈ ∆a,t with y ≥ s+
t such that Y1, . . . , Yk−1 ∈

(V \ ∆̂a,t) and Yk ∈ ∆̂a,t. Then Yk = (σk(η); yk) where yk ≥ s+
t .

Sketch of the proof. Note first that k ≥ n and η0 = · · · · ηn−1 = 0, otherwise the

point Y is mapped to the left of 0. As the point Y has some iterate in ∆̂a,t there
is a first ηi = 1. As in Lemma 7.11 we have that ηi+1 = 0. From y > s+

t , i ≥ n,
and the definition of s+

t it follows that

yi+2 = g[η0...ηi+1],a,t(y) = g[0i10],a,t(y) > ga ◦ g1,t ◦ gna (s+
t ) = s+

t .

This immediately implies that forward iterates of Y in ∆̂a,t are to the left of s+
t .

This ends the sketch of the proof. �

Lemma 7.15 implies that every point X = (0Z, x) with 0 < x < s+
t does not

belong to Ωa,t: points close to X in ∆̂a,t only can return to ∆̂a,t to the right of s+
t

and thus to the right of x. The proof of the proposition is now complete. �
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8. Proof of Theorem 2.6

8.1. Non-hyperbolic dynamics. In this subsection we prove items (A) and (B)
of Theorem 2.6. For the next result recall the definitions of an expanding pair of
parameters (a, t) (Definition 5.19), relative homoclinic class HV (Q,Ga,t) (Defini-
tion 2.4), and the set Na of non-hyperbolic parameters (Equation (1.1)).

Theorem 8.1. Consider (a, t) an expanding pair of parameters. Then Λa,t ⊂
HV (Q,Ga,t). In particular, t ∈ Na.

The first part of the theorem implies that if (a, t) is a expanding pair then
HV (P,Ga,t) ⊂ HV (Q,Ga,t) and thus t ∈ Na. Note that:

• Theorems 8.1 and 5.7 imply item (A) in Theorem 2.6;
• Theorems 8.1 and 5.14 imply item (B)(a) in Theorem 2.6;
• Theorems 8.1 and 5.12 imply item (B)(b) in Theorem 2.6.

The proof of Theorem 8.1 follows from the arguments in [BD], see also [DG].
Thus we will skip some details. In what follows the parameter a remains fixed and
thus it is omited.

To prove the theorem it is enough to see that any X ∈ Λt, X 6= P,Q, belongs to
HV (Q,Gt). By Proposition 7.5, every point X ∈ Λt, X 6= P,Q, has some iterate
in ∆t, thus replacing X by some iterate we can assume that X ∈ ∆t. Let us
also assume that X has infinitely many forward and backward returns to ∆t. The
case where the number of forward or backwards returns is finite is similar, indeed
simpler, thus it will be omitted. Let t ∈ (tn+1, tn]. The condition on the forward
returns implies that X = (ξ;x) where

ξ+ = 0k
−
1 +n10k

+
1 +n+k−2 10k

+
2 +n+k−3 1 · · · 10k

−
j +n+k+j 1 · · · , where k+

j ≥ 1, k−j ≥ 0.

Next claim implies the theorem.

Claim 8.2. X ∈ HV (Q,Gt).

Proof. Fix an small neighborhood U of X, we see that it contains a homoclinic
point of Q whose orbit is contained in V . Note that by the definition of X there
are m and a neighborhood J = J(x) of x in (0, 1/2) such that

Um,J
def
= [ξ−m . . . ξ−1.0

k−1 +n10k
+
1 +n+k−2 1 · · · 10k

+
m−1+n+k−m10k

+
m ]× J ⊂ U.

After shrinking J if necessary, this allows us to consider the composition

Γ
(k+m,k

−
m)···(k+1 ,k

−
1 )

t (J) = g
[0k
−
1 +n10k

+
1 +n+k

−
2 1···10

k
+
m−1

+n+k
−
m10k

+
m ]a,t

(J) = I, (8.1)

where by construction I is contained in Da,t.

Recalling the definition of Γ
(i,j)
a,t for t ∈ (tn+1, tn], Corollary 5.21 provides a

number r and a sequence of pairs (nr, `r) · · · (n1, `1) such that

0 ∈ g1 ◦ gn−1
a ◦ (gnr

a ◦ g1,t ◦ gn+`r
a ) ◦ · · · ◦ (gn1

a ◦ g1,t ◦ gn+`1
a )(I). (8.2)

Consider the finite sequence α = α−` . . . α−1 associated to the concatenation of the
maps ga and g1,t in equations (8.1) and (8.2), that is

α
def
= 0k

−
1 +n10k

+
1 +n+k−2 1 · · · 10k

−
m+n+k+m0`1+n10n1+`2+n1 · · · 0nr−1+`r+n10nr0n−11.

The inclusion in (8.2) and the definition of Um,J imply that

Yα =
(

0−Nα−` . . . α−1.0
N; 0
)
∈ G`a,t(Um,J).
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The choice of the itinerary α implies that

(g[α−1...α−`],a,t)
−1(0) ∈ [0, 1/2) for all k = 1, . . . , `.

By Remark 7.3, Yα is a homoclinic point of Q whose orbit is (by construction)
contained in V . This completes the proof of the claim. �

The proof of the theorem is now complete.

8.2. Hyperbolic dynamics. In this subsection we prove part (C) of Theorem 2.6
about the occurrence of hyperbolic dynamics. The proof of this result follows
adapting some arguments in [DR1]. The proof has two parts: we first split the
set Ωt into two disjoint parts and using these sets we code the itinerary of the
orbits (Theorem 8.4), thereafter we see that these two sets are hyperbolic relative
homoclinic classes (Theorem 8.10).

We consider a > log 4 and parameters t ∈ (t?n(a), tn(a)) for large n (in what
follows the dependence on a will be omitted). Associated to the intervals Lkt ,
k = s, c, u, in Proposition 6.4 we define the subsets of the reference cubes ∆t

∆i
t = {(ξ, x) ∈ ∆t such that x ∈ Lit}.

Definition 8.3. Consider X ∈ Λt ∩ ∆t with returns {%j(X)}j∈I(X). The s, c, u-
itinerary of X is the sequence {ij(X)}j∈I(X), ij(X) ∈ {s, c, u}, defined by

ij(X) = k if, and only if, X[j] = G
%j(X)
t (X) ∈ ∆k

t .

If ri(X) is the sequence of pairs associated to the returns of X then the condition
in Definition 8.3 is equivalent to

ij(X) = k if, and only if, Γ
rj(X)
t (x) ∈ Lkt . (8.3)

For k = s, c, u consider the following subsets of the non-wandering set Ωt of Gt
relative to the neighborhood V of the cycle:

Ω̃kt
def
= {X ∈ Ωt ∩∆t such that ij(X) = k for every j ∈ I(X)};

Ωst
def
= {P} ∪ {X ∈ Ωt such that Gkt (X) ∈ Ω̃st for some k };

Ωut
def
= {Q} ∪ {X ∈ Ωt such that Gkt (X) ∈ Ω̃ut for some k};

Ωct
def
= {X ∈ Ωt such that Gkt (X) ∈ Ω̃ct for some k}.

By (8.3) we have that

Ω̃kt = {X = (ξ;x) ∈ Ωt ∩∆t such that Γ
rj
t (x) ∈ Lkt for every j ∈ I(X)}. (8.4)

Theorem 8.4. Let t ∈ (t∗n, tn). Then for every n big enough it holds Ωt = Ωst ∪Ωut .

This theorem follows from the next proposition.

Proposition 8.5. Let t ∈ (t∗n, tn) and X ∈ Ωt ∩∆t. Then X ∈ Ω̃st ∪ Ω̃ut .

To get the theorem just recall the definitions of Ωst and Ωut and that every point
X ∈ Ωt \ ({P,Q}) has some iterate in ∆t (Proposition 7.5).

To prove the Proposition 8.5 we need some preparatory results. For i, j ∈
{s, c, u}, let Ωi,jt

def
= Ωit ∪ Ωjt and ∆i,j

t
def
= ∆i

t ∪∆j
t .

Lemma 8.6. Consider t ∈ (t∗n, tn).

• If X ∈ Ωt ∩∆s,c
t then ij(X) ∈ {c, s} for all j ∈ I(X)+;
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• If X ∈ Ωt ∩∆s
t then ij(X) ∈ {s} for all j ∈ I(X)+.

Proof. Just note that by (8.3) and (s1), (s2), (s4), and (w1) in Proposition 6.4
if X = X[0] ∈ ∆s,c

t then all forward returns X[j] of X are of type (1, r), r ≥ 0,
and X[j] ∈ ∆s,c

t , thus ij(X) ∈ {s, c}. The second item of the lemma follows
analogously. �

Lemma 8.7. Let t ∈ (t∗n, tn) and X ∈ Ωt ∩∆u
t . Then X ∈ Ω̃ut .

Proof. We need to see that ij(X) = u for all j ∈ I(X). The proof is by contra-
diction. By Lemma 8.6, if X[j] ∈ ∆s,c

t for some j then X[`] ∈ ∆s,c
t for all ` > j.

This allows us to construct a neighborhood of X consisting of points whose forward
returns (for sufficiently large iterates) are in ∆s,c

t and thus separated from X ∈ ∆u
t .

This prevents the point to be non-wandering.
The previous argument also implies that the backward returns of X are in ∆u

t : if
X[−`] ∈ ∆s,c

t , ` > 0, then Lemma 8.6 implies that X[0] ∈ ∆sc
t , a contradiction. �

Note that the argument in the proof of Lemma 8.7 implies that an itinerary of a
point in X ∈ ∆t ∩Ωt is constant. Combining this fact, Lemmas 8.6 and 8.7 we get

Corollary 8.8. Let t ∈ (t∗n, tn) and j ∈ {s, c, u}. If X ∈ Ωt ∩∆j
t then X ∈ Ω̃jt .

Lemma 8.9. Let t ∈ (t∗n, tn). Then Ω̃ct = ∅.

Proof. Assume by contradiction that Ω̃ct 6= ∅. Take any X ∈ Ω̃ct , after replacing
X by some iterate of it we can assume that X = X[0] = (ξ[0];x[0]) ∈ ∆c

t ∩ Ωt.
By Corollary 8.8, X[i] = (ξ[i];x[i]) ∈ ∆c

t for all i ≥ 1. By Proposition 6.4 x[i+1] =

Γ
(1,0)
t (x[i]) =

(
Γ

(1,0)
t

)i+1
(x[0]) ∈ Lct for all i ≥ 0 and (Γ

(1,0)
t )i(x)→ s+

t as i→∞. As
above, this prevents the point X to be non-wandering, getting a contradiction. �

Proof of Proposition 8.5. Just note that Corollary 8.8 and Lemma 8.9 imply that

Ωt ∩∆t = Ω̃st ∪ Ω̃ct ∪ Ω̃ut = Ω̃st ∪ Ω̃ut .

This ends the proof of the proposition. �

Consider now the point st?n in Lemma 6.1 with Γ
(1,0)
t?n

(st?n) = st?n and
(
Γ

(1,0)
t?n

)′
(st?n) =

1 and the periodic sequence η? = (0n10)Z. By construction, the point St?n
def
=

(η?; st?n) is a saddle-node of Ga,t?n (its central derivative is equal to one).

Theorem 8.10. Let t ∈ [t?n, tn). Then

(1) Ωst = HV (P,Gt) and Ωut = HV (Q,Gt).
(2) If t 6= t?n then Ωst and Ωut are uniformly hyperbolic (of central contracting

and of central expanding types, respectively).
(3) If t = t?n then Ωst ∩Ωut is the orbit of the saddle-node St?n . Moreover, every

invariant compact subset of Ωst (resp. Ωut )) disjoint from S?tn is uniformly
hyperbolic of contracting type (reps. expanding type).

Items (1) and (2) in Theorem 8.10 imply item (C)(a) of Theorem 2.6, where the
density of hyperbolic parameters follows from Lemma 6.3. Item (3) implies item
(C)(c) of Theorem 2.6.

Proof of Theorem 8.10. Let us first observe that Ωst and Ωut are compact sets which
are Gt invariant. Moreover, they are disjoint for t ∈ (t?n, tn).

The first item in the theorem follows from the two claims below:
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Claim 8.11. Ωut ⊂ HV (Q,Gt) and Ωst ⊂ HV (P,Gt).

Proof. We prove Ωut ⊂ HV (Q,Gt) (the case Ωst ⊂ HV (P,Gt) is analogous). By the

Gt-invariance of a homoclinic class, it is enough to see that every point X ∈ Ω̃ut
belongs to HV (Q,Gt). This proof follows considering an argument similar to the
ones in Claim 8.2, so we just sketch this proof.

Let us consider the case when X = (ξ;x) has infinitely many forward returns (the
general case is similar). Take a small neighborhood I containing x and contained
in Lut . Since the returns of x to Da,t are in Lut (Lemma 8.7), Proposition 6.4
implies that these returns are uniformly expanding. This implies that some return
of I contains a boundary point of Lut . If this extreme is da,t arguing exactly as in
Claim 8.2 we get a homoclinic point of Q. If the extreme is s+

t we can add a tail

of returns of type (1, 0). Since s+
t is the unique fixed point of Γ

(1,0)
t in Lut and is

expanding these iterations of I contains da,t and we are in the previous case. �

Claim 8.12. HV (Q,Gt) ⊂ Ωut and HV (P,Gt) ⊂ Ωst .

Proof. We prove HV (Q,Gt) ⊂ Ωut (the case HV (P,Gt) ⊂ Ωst is analogous). Take
a point X having a dense orbit in HV (Q,Gt). Lemma 7.9 implies this point has

infinitely many iterates in ∆t, thus we can assume that X ∈ ∆t. If X ∈ Ω̃jt then

its whole orbit X belongs to Ωjt and its closure is also contained in Ωjt . If X ∈ Ω̃ut
we are done. Otherwise, X ∈ Ω̃st and hence HV (Q,Gt) ⊂ Ωst . The inclusion in
Claim 8.11 implies that Ωut ⊂ HV (Q,Gt) ⊂ Ωst , which is a contradiction. This
completes the proof of the theorem. �

The hyperbolicity of Ωut in (2) follows from the expansion properties (u2) and
(u3) in Proposition 6.4. To get the hyperbolicity of Ωst in (2) we use (s2) and (s3)
in Proposition 6.4. These arguments are similar to the one in [DR1].

To prove (3) note that by construction the point St?n ∈ Ωst?n ∩ Ωut?n . By con-
struction, the intersection Ωst?n ∩ Ωut?n is the finite orbit of S?tn . The hyperbolicity-

like properties follow from (s2), (s3), (u2), and (u3) in Proposition 6.4 arguing as
above. �

It remains to prove item (C)(b) of Theorem 2.6. This follows from the next
lemma:

Lemma 8.13. The map Ga,tn(a) has a cycle relative to V associated to P and Q.

Proof. Recall that the definition of tn in (4.2) implies that

g1,tn ◦ gna (tn) = 0.

By item (4) in Corollary 3.1 this implies that
(
0−N.0n10N; 1/2

)
∈ Wu(P,Gtn) ∩

W s(Q,Gtn) and that orbit of this intersection point is contained in the neighbor-
hood of the cycle. Since {0Z} × (0, 1/2) ⊂ W s(P,Gtn) ∩W s(Q,Gtn) this implies
that Gtn has a heterodimensional cycle associated to P and Q (relative to V ). �
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