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Abstract. We derive and study stochastic dissipative dynamical systems on
coadjoint orbits by incorporating noise and dissipation into mechanical systems
arising from the theory of reduction by symmetry, including a semidirect-product
extension. Random attractors are found for this general class of systems when
the Lie algebra is semi-simple. We study two canonical examples, the free rigid
body and the heavy top, whose stochastic integrable reductions are found and
numerical simulations of their random attractors are shown.
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1. Introduction

Geometric mechanics, introduced in Poincaré [Poi01], is a powerful formalism
for understanding dynamical systems whose Lagrangian and Hamiltonian are in-
variant under the transformations of the configuration manifold M by a Lie group
G. Examples of its applications range from the simple finite dimensional dynamics
of the freely rotating rigid body, to the infinite dimensional dynamics of the ideal
fluid equations. For a historical review and basic references, see, e.g., [HMR98].
See [MR99, Hol08, HSS09] for textbook introductions to geometric mechanics and
background references. One of the main approaches of geometric mechanics is the
method of reduction of the motion equations of a mechanical system by the Lie
group symmetry G of either its Lagrangian formulation on the tangent space TM ,
or its Hamiltonian formulation on the cotangent space T ∗M . This reduction by
symmetry yields new equations for the momentum maps defined on the dual Lie
algebra g∗ of the Lie symmetry group G.

This Lie group reduction procedure simplifies the motion equations of a mechan-
ical system with symmetry by transforming them into new dynamical variables in
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g∗ which are invariant under the same Lie group symmetries as the Lagrangian and
Hamiltonian for the dynamics of the mechanical system. On the Lagrangian side, the
new invariant variables under the Lie symmetries are obtained from Noether’s theo-
rem, via the tangent lift of the infinitesimal action of the Lie symmetry group on the
configuration manifold. The unreduced Euler–Lagrange equations are replaced by
equivalent Euler-Poincaré equations expressed in the new invariant variables in g∗,
plus an auxiliary reconstruction equation, which restores the information in the tan-
gent space of the configuration space lost in transforming to group invariant dynam-
ical variables. On the Hamiltonian side, after a Legendre transformation, equivalent
new invariant variables in g∗ are defined by a momentum map J : T ∗M → g∗ from
the phase space T ∗M of the original system on the configuration manifold M to the
dual g∗ of the Lie symmetry algebra g ' TeG, via the cotangent lift of the infinitesi-
mal action of the Lie symmetry group on the configuration manifold. The cotangent
lift momentum map is an equivariant Poisson map which reformulates the canonical
Hamiltonian flow equations in phase space as noncanonical Lie-Poisson equations
governing flow of the momentum map in an orbit of the coadjoint action of the Lie
symmetry group on the dual of its Lie algebra g∗, plus an auxiliary reconstruction
equation for lifting the Lie group reduced coadjoint motion back to phase space
T ∗M .

Thus, applying a Lie symmetry reduction to a dynamical system with symmetry
yields coadjoint motion of the corresponding momentum map and, thus, reduces the
dimension of the dynamical system by restricting its motion to certain subspaces of
the original phase space, called coadjoint orbits; that is, orbits of the action of the
group G on g∗, the dual space of its Lie algebra g ' TeG. Coadjoint orbits lie on
level sets of the distinguished smooth functions C ∈ F : g∗ → R of the symmetry-
reduced dual Lie algebra variables µ ∈ g∗ called Casimir functions, which have null
Lie-Poisson brackets {C,F}(µ) = 0 with any other functions F ∈ F(g∗), including
the reduced Hamiltonian h(µ). Level sets of the Casimirs, on which the coadjoint
orbits lie, are symplectic manifolds which provide the framework on which geometric
mechanics is constructed. These symplectic manifolds have many applications in
physics, as well as in symplectic geometry, whenever Lie symmetries are present. In
particular, coadjoint motion of the momentum map J(t) = Ad∗g(t)J(0) for a solution
curve g(t) ∈ C(G) takes place on the intersections of level sets of the Casimirs with
level sets of the Hamiltonian.

Given this framework Lie group reduction by symmetry for deterministic geomet-
ric mechanics, we shall seek strategies for adding stochasticity and dissipation in
classical mechanical systems with symmetry which preserve the coadjoint motion
structure of the unperturbed deterministic dynamics as much as possible. Specifi-
cally, we seek stochastic coadjoint motion equations whose solutions dissipate energy
but also lie on the coadjoint orbit of the unperturbed equation. Consequently, our
first goal in this paper will be to replace the deterministic equations for coadjoint
motion by stochastic processes whose solutions lie on coadjoint orbits. However,
simply inserting additive noise into the deterministic equations will not, in general,
produce coadjoint motion on level sets of the Casimirs of a Lie-Poisson bracket. In-
stead, our approach in developing a systematic derivation of stochastic deformations
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that preserve coadjoint orbits will be to constrain the variations in Hamilton’s prin-
ciple to preserve the transport relations for infinitesimal transformations defined by
the action of a stochastic vector field on the configuration manifold.

Having used the constrained Hamilton’s principle to derive the stochastic coad-
joint motion equation, the study of the associated Fokker-Planck equation and its
invariant measure will follow naturally, and be well defined, at least provided one
restricts to finite dimensional mechanical systems. The resulting Fokker-Planck
equation defines a probability density for coadjoint motion on Casimir surfaces,
since it takes the form of a Lie-Poisson equation for the transport part, and a dou-
ble Lie-Poisson structure for the diffusion part, both of which generate motion along
coadjoint orbits. As we will discover, this form of the Fokker-Planck equation in the
absence of any additional energy dissipation will imply that the invariant measure
(asymptotically in time) simply tends to a constant on Casimir surfaces.

Next, we shall include an additional energy dissipation mechanism, called double
bracket dissipation, which preserves the coadjoint orbits while it decays the energy
toward its minimum value, usually associated with an equilibrium state of the de-
terministic system. We refer to [BKMR96, GBH13, GBH14] and references therein
for complete studies of double bracket dissipations. In a second step, we will include
this double bracket dissipative term in our stochastic coadjoint motion equations
and again study the associated Fokker-Planck equation and its invariant measure,
which will no longer be a constant but instead will be an exponential function of
the energy.

The procedure we shall follow will produce noisy dissipative dynamical systems
on coadjoint orbits. The study of multiplicative noise and nonlinear dissipation in
these systems is greatly facilitated by the symmetric structure of the equations for
coadjoint motion. Indeed, a large part of standard dynamical system theory will
still apply in our setting, In particular, the proof of existence of random attractors
follows a standard approach. We will mainly focus on this particular feature of
random attractors of our systems, as it is an important diagnostic and has recently
been as active field of research. The main idea behind the random attractor is the
decomposition of the invariant measure of the Fokker-Planck equation into random
measures, called Sinai-Ruelle-Bowen, or SRB measures, whose expectation recovers
the invariant measure of the Fokker-Planck equation. See, e.g., [You02] for a short
insightful review. Besides these theoretical considerations, random attractors can
help understanding the notion of reliability in complex dynamical systems, see for
example [LSBY09]. The proof of existence of non-singular SRB measures requires
some work, but it can be accomplished for our general class of mechanical systems
written on semi-simple Lie algebras. Although geometric mechanics can also describe
infinite dimensional systems such as fluid mechanics, [HMR98], we will only focus
here on finite dimensional systems, and in particular on systems described by semi-
simple Lie algebras. The natural non-degenerate and bi-invariant pairing admitted
by semi-simple Lie algebras will facilitate the computations involved in proving our
results, although some of the results may still apply more generally.

We will apply the theory of stochastic deformations that preserve coadjoint orbits
for a particular class of semidirect product systems whose advected quantities live
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in the underlying vector space of the Lie algebra g. With this particular structure,
which can be viewed as a generalised heavy top, we will be able to prove the existence
of SRB measures. Although much of the present theory may also apply for more
general systems than we treat here, as a first investigation we will show that simple
mechanical systems in geometric mechanics exhibit interesting random attractors
when both noise and a certain type of dissipation are included.

As illustrations, we will discuss in detail two canonical elementary examples in
the science of stochastic dissipative geometric mechanics. These two examples are
the rigid body and the heavy top, which are also the well known canonical exam-
ples for understanding symmetry reduction for deterministic geometric mechanics,
[MR99, Hol08, HSS09]. Their extensions here to include stochasticity and dissi-
pation which preserve coadjoint orbits may be regarded as natural counterparts
for geometric mechanics of the standard nonlinear dissipative systems, such as the
stochastic Lorenz systems, treated, e.g., in [KCG15].

Main contributions of this work. Section 2 uses the Clebsch approach of [Hol15]
to introduce noise into the Euler-Poincaré equation for the momentum map, includ-
ing its extension for semidirect product Lie symmetry groups. By construction, the
momentum map for the stochastic vector field is the same as that for the determin-
istic vector field, so the stochastic and deterministic Euler-Poincaré equations for
the momentum map may be compared directly. Section 3 introduces the selective
decay mechanism for dissipation and studies the existence of random attractors.
The first example of the Euler-Poincaré equation is treated in Section 4 with the
free rigid body. Section 5 treats the Heavy Top as an example of the semidirect
product extension. Finally, Section 6 briefly sketches the treatments of two other
examples, the SO(4) free rigid body and the spring pendulum.

2. Structure preserving stochastic mechanics

Stochastic Hamilton equations were introduced along parallel lines with the de-
terministic canonical theory in [Bis82]. These results were later extended to in-
clude reduction by symmetry in [LCO08]. Reduction by symmetry of expected-
value stochastic variational principles for Euler-Poincaré equations was developed
in [ACC14, CCR15]. Stochastic variational principles were also used in constructing
stochastic variational integrators in [BRO09].

The present work is based on recent work of [Hol15], which used variational prin-
ciples to introduce noise in fluid dynamics. This variational approach was devel-
oped further for fluids with advected quantities in [GBH16]. The inclusion of noise
in fluid equations has a long history in the scientific literature. For reviews and
recent advances in stochastic turbulence models, see [Kra94], [GK96]; and in the
analysis of stochastic Navier-Stokes equations, see [MR01]. These studies of the
stochastic Navier-Stokes equation are fundamental in the analysis of fluid turbu-
lence. Expected-value stochastic variational principles leading to the derivation of
the Navier-Stokes motion equation for incompressible viscous fluids have been in-
vestigated in [AC12]. For further references, we refer to [Hol15].
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The present work incorporates stochasticity into finite dimensional mechanical
systems admitting Lie group symmetry reduction, by using the standard Clebsch
variational method for deriving cotangent lifted momentum maps. We review the
standard approach to Lie group reduction by symmetry for finite dimensional sys-
tems in 2.1 and incorporate noise into this approach in section 2.2. Next, we describe
the semidirect extension in 2.3 and study the associated Fokker-Planck equations
and invariant measures in 2.4. The primary examples from classical mechanics with
symmetry will be the free rigid body and the heavy top under constant gravity.

2.1. Euler-Poincaré reduction. Classical mechanical systems with symmetry can
often be understood geometrically in the context of Lagrangian or Hamiltonian re-
duction, by lifting the motion q(t) on the configuration manifoldQ to a Lie symmetry
group via the action of the symmetry group G on the configuration manifold, by
setting q(t) = g(t)q(0), where the multiplication has to be understood as the action
of G to Q. This procedure lifts the solution of the motion equation from a curve
q(t) ∈ Q to a curve g(t) ∈ G, see [MR99, Hol08]. The simplest case is when Q = G.
This case, called Euler-Poincaré reduction, will be described in the present section.

In the Lagrangian framework, reduction by symmetry may be implemented in
Hamilton’s principle via restricted variations in the reduced variational principle
arising from variations on the corresponding Lie group. In the standard approach,
for an arbitrary variation δg of a curve g(t) ∈ G in a Lie group G, the left-invariant
reduced variables are g−1ġ ∈ g in the Lie algebra g = TeG. Their variations arise
from variations on the Lie group and are given by

δξ = η̇ + adηξ ,

for η := g−1δg. Here, the operation ad : g× g → g represents the adjoint action of
the Lie algebra on itself via the Lie bracket, denoted equivalently as adξη = [ξ, η],
and we will freely use either notation throughout the text. If the Lagrangian L(g, ġ)
is left-invariant under the action of G, the restricted variations δξ of the reduced
Lagrangian L(e, g−1ġ) =: l(ξ) inherited from admissible variations of the solution
curves on the group yield the Euler-Poincaré equation

d

dt

∂l(ξ)

∂ξ
+ ad∗ξ

∂l(ξ)

∂ξ
= 0 . (2.1)

In this equation, ad∗ : g × g∗ → g∗ is the dual of the adjoint Lie algebra action,
ad. That is, 〈ad∗ξµ, η〉 = 〈µ, adξη〉 for µ ∈ g∗ and ξ, η ∈ g, under the nondegenerate
pairing 〈 · , · 〉 : g × g∗ → R. Throughout this paper, we will restrict ourselves to
semi-simple Lie algebras, so that the pairing is given by the Killing form, defined as

κ(ξ, η) := Tr (adξadη) . (2.2)

In terms of the structure constants of the Lie algebra denoted as cijk for a basis

ei, i = 1, . . . , dim(g), so that [ei, ej] = cijkei, in which ξ = ξiei and η = ηjej, the
Killing form takes the explicit form

Tr(adξadη) = cnimc
m
jnξ

iηj.

An important property of this pairing is its bi-invariance, written as

κ(ξ, adζη) = κ(adξζ, η), (2.3)
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for every ξ, η, ζ ∈ g. This pairing allows us to identify the Lie algebra with its dual,
as the Killing form is non-degenerate. We will also use the property for compact
Lie algebras, that the Killing form is negative definite and thus induces a norm on
the Lie algebra, ‖ξ‖2 := −κ(ξ, ξ).

Of course, the theory of semi-simple Lie algebra is very well-known and developed,
see for example [Var84]. However, for the sake of clarity, we will express the abstract
notations of adjoint and coadjoint actions with respect to the Killing form. We may
then identify g∗ ∼= g for each semi-simple Lie algebra we treat here.

We now turn to the equivalent Clebsch formulation of the Euler-Poincaré equa-
tions via a constrained Haamilton’s principle, which we will use for implementing the
noise in these systems. The Clebsch formulation of the Euler-Poincaré equation and
its corresponding Lie-Poisson bracket on the Hamiltonian side has been explored ex-
tensively in ideal fluid dynamics [HK83, MW83] and more recently in optimal control
problems [GBR11] and stochastic fluid dynamics [Hol15]. This earlier work should
be consulted for detailed derivations of Clebsch formulations of Euler-Poincaré equa-
tions in the contexts of ideal fluids and optimal control problems. We will briefly
sketch the Clebsch approach, as specialised to the applications treated here; since
we will rely on it for the introduction of noise in finite-dimensional mechanical sys-
tems by following the approach of [Hol15] for stochastic fluid dynamics. We first
introduce the Clebsch variables q ∈ g and p ∈ g∗, where p will be a Lagrange mul-
tiplier which enforces the dynamical evolution of q given by the Lie algebra action
of ξ ∈ g, as q̇ + adξq = 0. Note the similarity of this equation with the constrained
variations of the Lagrangian reduction theory. The Clebsch method in fluid dynam-
ics (resp. optimal control) introduces auxiliary equations for advected quantities
(resp. Lie algebra actions on state variables) as constraints in the Hamilton (resp.
Hamilton-Pontryagin) variational principle δS = 0 with constrained action

S(ξ, q, p) =

∫
l(ξ)dt+

∫
〈p, q̇ + adξq〉dt . (2.4)

Taking free variations of S with respect to ξ, q and p yields a set of equations for
these three variables which can be shown to be equivalent to the Euler-Poincaré
equation (2.1). The relation between the Lie algebra vector ξ ∈ g and the phase-
space variables (q, p) ∈ T ∗eG is given by the variation of the action S with respect
to the velocity ξ in (2.4). This variation yields the momentum map, µ : T ∗eG→ g∗,
given explicitly by

µ :=
∂l(ξ)

∂ξ
= ad∗qp. (2.5)

Unless specified otherwise, we will always use the notation µ for the conjugate
variable to ξ. This version of the Clebsch theory is especially simple, as the Clebsch
variables are also in the Lie algebra g. In general, it is enough for them to be in
the cotangent bundle of a manifold T ∗M on which the group G acts by cotangent
lifts. In this more general case, the adjoint and coadjoint actions must be replaced
by their corresponding actions on T ∗M but the method remains the same. Another
generalisation, which will be useful for us later, allows the Lagrangian to depend on
both ξ and q. In this case, the Euler-Poincaré equation will acquire additional terms
depending on q and the Clebsch approach will be equivalent to semidirect product
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reduction [HMR98]. We will consider a simple case of this extension in Section 2.3
and in the treatment of the heavy top in Section 5.

2.2. Structure preserving stochastic deformations. We are now ready to de-
form the Euler-Poincaré equation (2.1) by introducing noise in the constrained Cleb-
sch variational principle (2.4). In order to do this stochastic deformation, we in-
troduce n independent Wiener processes W i

t indexed by i = 1, 2, . . . , n, and their
associated stochastic potential fields Φi(q, p) ∈ R which are prescribed functions of
the Clebsch phase-space variables, (q, p). The stochastic processes used here are
standard Weiner processes, as discussed, e.g., in [CCR15, IW14]. The number of
stochastic processes can be arbitrary, but usually we will take it as equal to the
dimension of the Lie algebra, n = dim(g). The constrained stochastic variational
principle is then given by

S(ξ, q, p) =

∫
l(ξ)dt+

∫
〈p, dq + adξq dt〉+

∫ n∑
i=1

Φi(q, p) ◦ dW i
t . (2.6)

In the stochastic action integral (2.6) and hereafter, the multiplication symbol ◦ de-
notes a stochastic integral in the Stratonovich sense. The Stratonovich formulation
is the only choice of stochastic integral that admits the classical rules of calcu-
lus (e.g., integration by parts, the change of variables formula, etc.). Therefore,
the Stratonovich formulation is indispensable in variational calculus and in optimal
control. The free variations of the action functional (2.6) may now be taken, and
they will yield stochastic processes for the three variables ξ, q and p.

For convenience in the next step of deriving a stochastic Euler-Poincaré equation,
we will assume that the Lagrangian l(ξ) in the action (2.6) is hyperregular, so that ξ

may be obtained from the fibre derivative ∂l(ξ)
∂ξ

= ad∗qp. We will also specify that the

stochastic potentials Φi(q, p) should depend only on the momentum map µ = ad∗qp so
that the resulting stochastic equation will be independent of q and p. Following the
detailed calculations in [Hol15], we then find the stochastic Euler-Poincaré equation

d
∂l(ξ)

∂ξ
+ ad∗ξ

∂l(ξ)

∂ξ
dt−

∑
i

ad∗∂Φi(µ)

∂µ

∂l(ξ)

∂ξ
◦ dW i

t = 0 . (2.7)

In terms of the stochastic process dX = ξdt −
∑

i
∂Φi(µ)
∂µ
◦ dW i

t with µ = ∂l(ξ)
∂ξ

, the

stochastic Euler-Poincaré equation (2.7) may be expressed in compact form, as

dµ+ ad∗dXµ = 0 . (2.8)

The introduction of noise in the Clebsch-constrained variational principle rather
than using reduction theory has simplified some of the technical difficulties linked
with stochastic processes on Lie groups and constrained variations arising for such
processes. See for example [ACC14] for a different approach to the derivation and
analysis of deterministic expectation-value Euler-Poincaré equations using reduction
by symmetry with conditional expectation.

As in the deterministic case, various generalisations of this theory are possible.
For example, as mentioned earlier, the Clebsch phase-space variables can also be
defined in T ∗M , the Lagrangian can depend on q for systems of semidirect product
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types [GBH16]. Another generalisation is to let the stochastic potentials Φi(µ) also
depend separately on q in the semidirect product setting, as we will see later.

After having defined the Stratonovich stochastic process (2.7), one may compute
its corresponding Itô form, which is readily given in terms of the ad∗ operation by

d
∂l(ξ)

∂ξ
+ ad∗ξ

∂l(ξ)

∂ξ
dt+

∑
i

ad∗σi
∂l(ξ)

∂ξ
dW i

t +

− 1

2

∑
i

ad∗σi

(
ad∗σi

∂l(ξ)

∂ξ

)
dt = 0,

(2.9)

where σi := − ∂Φi(µ)
∂µ

. Note that the indices for σi in the Itô sum in (2.9) are the same,

and they be taken as a basis of the underlying vector space. In terms of µ := ∂l(ξ)
∂ξ

the Itô stochastic Euler-Poincaré equation (2.9) may be expressed equivalently as

dµ+ ad∗ξµ dt+
∑
i

ad∗σiµ dW
i
t −

1

2

∑
i

ad∗σi
(
ad∗σiµ

)
dt = 0 . (2.10)

Another formulation of the stochastic Euler-Poincaré equation in (2.7) which will
be used later in deriving the Fokker-Planck equation is the stochastic Lie-Poisson
equation

df(µ) =

〈
µ,

[
∂f

∂µ
,
∂h

∂µ

]〉
dt+

∑
i

〈
µ,

[
∂f

∂µ
,
∂Φi

∂µ

]〉
◦ dW i

t (2.11)

=: {f, h}dt+
∑
i

{f,Φi} ◦ dWi , (2.12)

where we have defined the Lie-Poisson bracket {·, ·} just as in the deterministic case,
from the adjoint action and the pairing on the Lie algebra g.

2.3. The extension to semidirect product systems. As discussed in [HMR98],
“It turns out that semidirect products occur under rather general circumstances
when the symmetry in T ∗G is broken”. The geometric mechanism for this re-
markable fact is that under reduction by symmetry, a semidirect product of groups
emerges whenever a break of symmetry in the phase space occurs. The symmetry
breaking produces new dynamical variables, living in the coset space formed from
taking the quotient G/Ga of the original unbroken symmetry G by the remaining
symmetry Ga under the isotropy subgroup of the new variables. These new dynam-
ical variables form a vector space G/Ga ' V on which the unbroken symmetry acts
as a semidirect product, GsV . In physics, elements of the vector space V corre-
sponding to the new variables are called “order parameters”. Typically, in physics,
the original symmetry is broken by the introduction of potential energy depending
on variables which reduce the symmetry to the isotropy subgroup of the new vari-
ables. Dynamics on semidirect products GsV results, and what had been only flow
under the action of the unbroken symmetry before now becomes flow plus waves, or
oscillations, produced by the exchange of energy between its kinetic and potential
forms. The heavy top is the basic example, and it will be treated in Section 5. The
semidirect product motion for the heavy top arises in the presence of gravity, when



NOISE AND DISSIPATION ON COADJOINT ORBITS 9

the support point of a freely rotating rigid body is shifted away from its centre of
mass.

With this connection between symmetry breaking and semidirect products in
mind, we now extend the stochastic Euler-Poincaré equations to include semidi-
rect product systems. We refer to [HMR98] for a complete study of these systems.
Although the deterministic equations of motion in [HMR98] are derived from re-
duction by symmetry, we will instead incorporate noise by simply extending the
Clebsch-constrained variational principle used in the previous section.

The generalisation proceeds, as follows. We will begin by assuming that the
Clebsch phase-space variables comprise the elements of T ∗V for a given vector space
V on which the Lie group G acts freely and properly. In fact we will have (q, p) ∈
V × V ∗. However, in this work, we will restrict ourselves to the case where V is the
underlying vector space of g. Following the notation of [Rat81], we denote g = V in
the sequel. Then, from the Killing form on g, denoted by κ : g× g→ R, there is a
bi-invariant extension of the Killing form on gsg defined as

κs ((ξ1, ξ2), (η1, η2)) := κ(ξ1, η2) + κ(ξ2, η1). (2.13)

Although this pairing is non-degenerate and bi-invariant, we will not use it for the
definition of the dual of the semidirect algebra gsV . Instead, we will use the sum
of both Killing forms, namely

κ0 ((ξ1, ξ2), (η1, η2)) := κ(ξ1, η1) + κ(ξ2, η2). (2.14)

The group action is defined via the adjoint representation of G on V = g, given by
(g1, η1)(g2, η2) = (g1g2, η1 + Adg1η2). We then directly have the infinitesimal adjoint
and coadjoint actions as

ad(ξ1,q1)(ξ2, q2) = (adξ1ξ2, adξ1q2 + adq1ξ2) ,

ad∗(ξ,q)(µ, p) = (ad∗ξµ+ ad∗qp, ad∗ξp),
(2.15)

where the coadjoint action is taken with respect to κ0 in (2.14).

The extended Killing form κs defined in (2.13), gives, apart from κ(η, η) with
η ∈ g, a second invariant function on the coadjoint orbit

κs ((ξ, η), (ξ, η)) = 2κ(ξ, η).

One then replaces the corresponding Lie algebra actions in the Clebsch-constrained
variational principle (2.6), to obtain the stochastic process with semidirect product

d (µ, q) + ad∗(ξ,r) (µ, q) dt+
∑
i

ad∗( ∂Φi(µ,q)

∂µ
,
∂Φi(µ,q)

∂q

) (µ, q) ◦ dW i
t = 0, (2.16)

where l : gsV → R, Φi : g∗sV ∗ → R and

∂l(ξ, q)

∂ξ
=: µ and

∂l(ξ, q)

∂q
=: r . (2.17)

Consequently, after taking the Legendre transform of l, we have the Hamiltonian
derivatives

∂h(µ, q)

∂µ
=: ξ and

∂h(µ, q)

∂q
=: − r , (2.18)
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for h : g∗sV ∗ → R. By substituting into (2.16) the expressions in (2.15) for the
coadjoint action, we obtain the system

dµ+
(
ad∗ξµ+ ad∗rq

)
dt+

∑
i

(
ad∗∂Φi(µ,q)

∂µ

µ+ ad∗∂Φi(µ,q)

∂q

q

)
◦ dW i

t = 0 ,

dq + ad∗ξqdt+
∑
i

ad∗∂Φi(µ,q)

∂µ

q ◦ dW i
t = 0 .

(2.19)

Although the number of stochastic potentials Φi one may consider is arbitrary,
but for our purposes we shall find it convenient to restrict to a maximum of n =
dim(g) + dim(V ) such potentials. In fact, the potentials associated with V will not
actually be fully treated here.

The semidirect product theory we have described here is the simplest instance of
it, as we are using a particular vector space V . In general, the advected quantities
can also be in a Lie algebra, or an arbitrary manifold, provided the action of the
group G on it is free and proper [GBH16].

2.4. The Fokker-Planck equation and invariant distributions. We derive
here a geometric version of the classical Fokker-Planck equation (or forward Kol-
mogorov equation) using our SDE (2.7). Recall that the Fokker-Planck equation
describes the time evolution of the probability distribution P for the process driven
by (2.7). We refer to the textbook [IW14] for a complete treatment of stochastic
processes. Here, we will consider P as a function C(g∗) with the additional property
that

∫
g∗
Pdµ = 1. First, the generator of the process (2.7) can be readily found from

the Lie-Poisson form (2.9) of the stochastic process (2.12) to be

Lf(µ) =

〈
ad∗ξµ,

∂f

∂µ

〉
−
∑
i

〈
ad∗σiµ,

∂

∂µ

〈
ad∗σiµ,

∂f

∂µ

〉〉
, (2.20)

where 〈 · , · 〉 still denotes the Killing form on the Lie algebra g and f ∈ C(g∗) is an
arbitrary function of µ. Provided that the Φi’s are linear functions of the momentum
µ, the diffusion terms of the infinitesimal generator L will be self-adjoint with respect
to the L2 pairing

∫
g∗
f(µ)P(µ)dµ. If Φ is not linear, the advection terms of L∗ will

contain other terms but since we will restrict our considerations to the case of linear
stochastic potentials, mainly for practical reasons, we will refer to (2.20) and its
analogues as the Fokker-Planck operator L∗.

The Fokker-Planck equation describes the dynamics of the probability distribution
P associated to the stochastic process for µ, in the standard advection diffusion form.
Another step can be taken to highlight the underlying geometry of the Fokker-Planck
equation (2.20), by rewriting it in terms of the Lie-Poisson bracket structure

d

dt
P + {h,P} −

∑
i

{Φi, {Φi,P}} = 0 , (2.21)

where h(µ) is the Hamiltonian associated to l(ξ) by the Legendre transform. In
(2.21), we recover the Lie-Poisson formulation (2.12) of the Euler-Poincaré equation
together with a dissipative term arising from the noise of the original SDE in a
double Lie-Poisson bracket form.
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This formulation gives the following theorem for invariant distributions of (2.20):

Theorem 2.1. The invariant distribution P∞ of the Fokker-Planck equation (2.20),
i.e, L∗P∞ = 0 is uniform on the coadjoint orbits on which the SDE (2.7) evolves.

Proof. By a standard result in functional analysis, see for example [Vil09], a linear
differential operator of the form L = B +

∑
iA

2
i has the property that ker(L) =

ker(Ai) ∩ ker(B) where here Ai = {Φi, ·} and B = {h, ·}. Consequently, for every
smooth function f , the only functions g which satisfy {f, g} = 0 are the Casimirs,
or invariant functions, on the coadjoint orbits. When restricted to a coadjoint orbit,
these functions become constants. Hence, the invariant distribution P∞ is a constant
on the coadjoint orbit identified by the initial conditions of the system. �

Since the dynamics is restricted to the coadjoint orbits, for the probability distri-
bution P to tend to a constant, yet remain normalisable, satisfying

∫
g∗
P(µ)dµ = 1,

the value of the density must tend to the inverse of the volume of the coadjoint
orbit. Of course the compactness of the coadjoint orbit is equivalent to P∞ > 0. For
non-compact orbits, Theorem 2.1 is still valid, and it will imply an asymptotically
vanishing invariant distribution, in the same sense as for the invariant solution of
the heat equation on the real line. In this case, a more detailed analysis of the
invariant distribution can be performed by studying marginals, or projections onto
a compact subspace of the coadjoint orbit.

Examples of non-compact coadjoint orbits arise in the semidirect product set-
ting. First, the Fokker-Planck equation for the semidirect product stochastic process
(2.16) is given by

Lf(µ, q) =

〈
ad∗(ξ,r)(µ, q),

(
∂f(µ, q)

∂µ
,
∂f(µ, q)

∂q

)〉
−

−
∑
i

〈
ad∗(σi,ηi)(µ, q),

{
∂

∂µ

〈
ad∗(σi,ηi)(µ, q),

(
∂f(µ, q)

∂µ
,
∂f(µ, q)

∂q

)〉
,

,
∂

∂q

〈
ad∗(σi,ηi)(µ, q),

(
∂f(µ, q)

∂µ
,
∂f(µ, q)

∂q

)〉}〉
,

(2.22)

where σi := −∂Φi/∂µ and ηi := −∂Φi/∂q. The pairing used here is the sum of
the pairings on g and on V , given by κ0 in (2.14). Note that for some values of
index i, the vector fields σi or ηi may be absent. One can check that L∗ = L; so
that L generates the Lie-Poisson Fokker-Planck equation for the probability density
P(µ, q). As before, upon using the explicit form of the coadjoint actions, one finds

Lf(µ, q) =

〈
ad∗ξµ+ ad∗qr,

∂f

∂µ

〉
+

〈
ad∗ξq,

∂f

∂q

〉
−

−
∑
i

〈
ad∗σiµ+ ad∗qηi,

∂Ai
∂µ

〉
−
∑
i

〈
ad∗σiq,

∂Ai
∂q

〉
,

where Ai : =

〈
ad∗σiµ+ ad∗qηi,

∂f

∂µ

〉
+

〈
ad∗σiq,

∂f

∂q

〉
.

(2.23)

The Fokker-Planck equation (2.22) provides a direct corollary of Theorem 2.1.
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Corollary 2.1.1. The invariant probability density P∞(µ, q) of (2.22) is constant
on the coadjoint orbit corresponding to the initial conditions of the stochastic process
(2.16).

As mentioned before, the coadjoint orbit of this system is not compact, even if it
had been compact for the Lie algebra g. Nevertheless, we can study the marginal
distributions

P1(µ) :=

∫
P(µ, q)dq and (2.24)

P2(q) :=

∫
P(µ, q)dµ , (2.25)

which of course extend to invariant marginal distributions P1
∞ and P2

∞. With these
marginal distributions, we can get more information on the invariant distribution of
the semidirect product Lie-Poisson Fokker-Planck equation (2.22), as summarized
in the next theorem.

Theorem 2.2. For a semi-simple Lie algebra g and V = g, the marginal invariant
distributions defined in (2.24) and (2.25) of the Fokker-Planck equation (2.22), with
ηi = 0, for all i, have the following forms.

(1) The invariant distribution P2
∞(q) is constant on the q-dependent subspace of

the coadjoint orbit. If the Lie algebra g is non-compact, the constant is zero.
(2) The invariant distribution P1

∞(µ) restricted to κ(µ, µ) is constant.
(3) If g is compact, the invariant distribution P1

∞(µ) is linearly bounded in time
in the direction perpendicular to κ(µ, µ).

Proof. We will compute the invariant marginal distributions separately, but first
recall that the invariant distribution P(µ, q) is constant on the Casimir level sets
given by the initial conditions.

(1) By integrating the Fokker-Planck equation (2.22) over µ, one obtains

LP2(q) =

∫ 〈
ad∗ξq,

∂P(µ, q)

∂q

〉
dµ−

〈
ad∗σiq,

∂

∂q

〈
ad∗σiq,

∂P2(q)

∂q

〉〉
, (2.26)

upon using the property that the coadjoint action is divergence-free (because of the
anti-symmetry of the adjoint action, when identified with the coadjoint action via
the Killing form) and recalling that the Lie algebra is either compact, or P(µ, q) = 0
for the boundary conditions.

Only the advection term remains in (2.26), as ξ = ∂h
∂µ

depends on µ. Nevertheless,

an argument similar to that for the proof of Theorem 2.1 may be applied here to give
the result of constant marginal distribution on the q dependent part of the coadjoint
orbits. Again, if the Lie algebra is non-compact, then the probability density P2

∞(q)
must vanish because of the normalisation.

(2) We first integrate the Fokker-Planck equation (2.22) with respect to the q
variable to find

LP1(µ) =

〈
ad∗ξµ,

∂P1

∂µ

〉
−
∑
i

〈
ad∗σiµ,

∂

∂µ

〈
ad∗σiµ,

∂P1

∂µ

〉〉
, (2.27)
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where we have again used that the coadjoint action is divergence free, the same
boundary conditions and the fact that 〈adqξ,

∂P
∂µ
〉 = 0, ∀ξ since ∂P

∂µ
is aligned with q.

Indeed, P is a function of the Casimirs, and thus is a function of κs((µ, q), (µ, q)).
This fact prevents us from directly invoking Theorem 2.1 as we would find that P1

is indeed constant on κ(µ, µ), but µ does not have an invariant norm. Nevertheless,
we can still use this theorem by restricting P1 to the sphere κ(µ, µ), or equivalently
just considering polar coordinates for µ and discarding the radial coordinate. In
this case we can invoke Theorem 2.1 and obtain the result of a constant marginal
distribution P1

∞ projected on the coadjoint orbit of the Lie algebra g alone.

(3) We compute the time derivative of the quantity ‖µ‖2 := −κ(µ, µ), which is
positive definite and thus defines a norm, to get an upper estimate of the form

d

dt

1

2
‖µ‖2 = 〈µ, µ̇〉 = 〈adrq, µ〉 ≤ ‖r‖‖q‖‖µ‖.

Then, because ‖q‖ =
√
−κ(q, q) is constant, and provided that r is bounded, we

can integrate to get

‖µ(t)‖ ≤ ‖µ(0)‖+ αt, (2.28)

where α is a constant depending on the Lie algebra and the Hamiltonian. �

This section has reviewed the framework for the study of noise in dynamical
systems defined on coadjoint orbits, and has illustrated how noise may be included
in these systems, so as to preserve the deterministic coadjoint orbits. The systems we
have considered are the Euler-Poincaré equations on semi-simple finite dimensional
Lie groups and the semidirect product structures which appear when the advected
quantities are introduced in the underlying vector space of the Lie algebra of the
Lie group. These structures are not the most general. However, their study has
allowed us to use the properties of the natural pairing given by the Killing form to
prove a few illustrative results in a simple and transparent way. In particular, we
showed that the invariant measure of the Fokker-Planck equation, written in Lie-
Poisson form, is constant on the coadjoint orbits. In the semidirect product setting,
a bit more care was needed to obtain similar results of marginal distributions, as the
coadjoint orbits are not compact in this case. We will illustrate our approach with
the two basic examples of the rigid body and heavy top in sections 4 and 5, where
more will be said about these systems, and in particular about their integrability.

3. Dissipation and random attractors

In the previous section we described a structure preserving stochastic deformation
of mechanical systems with symmetries. The preserved structure is the coadjoint
orbit of the deterministic system. Namely, the stochastic process still belongs to
one of these orbits, characterised by the initial conditions of the system. This
preservation is reflected in the strict conservation of particular integrals of motion,
called Casimirs. In general, these are the only conserved quantities of our stochastic
processes. Indeed, the energy is not conserved, apart from very particular choices
of the energy and the stochastic potentials as we will see for some examples. The
energy is not strictly decaying either, but is subject to random fluctuations with its
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own stochastic process coupled to the stochastic process of µ. The complexity of
the energy evolution hindered us from studying it in full generality in the previous
sections. In the present section, however, we will investigate the energy behaviour
for particular mechanical examples subject to dissipation and random fluctuations.
The type of energy dissipation that we will introduce in Section 3.1 also preserves
the coadjoint orbits. Consequently, the dissipation is compatible with our stochastic
deformation. The main outcome after introducing this dissipation is the emergence
of a balance between noise and dissipation which will make the invariant measure
of the Fokker-Planck equation energy dependent, as we will see in Section 3.2 and
in the proof of existence of random attractors in Section 3.3.

3.1. Double bracket dissipation. To augment the stochastic processes intro-
duced in the previous section, we will add a type of dissipation for which the solu-
tions of the stochastic process will still lie on the deterministic coadjoint orbit. For
this purpose, we will use double bracket dissipation, which was studied in detail in
[BKMR96] and was generalised recently in [GBH13, GBH14]. We will follow the
latter works to include an energy dissipation which preserves the Casimir functions.
We will not review this theory in detail here. Instead, we refer the reader to [GBH13]
for a detailed discussion of Euler-Poincaré selective decay dissipation and [GBH14]
for the semidirect product extension.

For the stochastic process (2.8), the dissipative stochastic Euler-Poincaré equation
written in Hamiltonian form is

dµ+ ad∗∂h
∂µ
µ dt+ θ ad∗∂C

∂µ

[
∂C

∂µ
,
∂h

∂µ

][
dt+

∑
i

ad∗σiµ ◦ dW
i
t = 0 , (3.1)

where θ > 0 parametrises the rate of energy dissipation and C is a chosen Casimir
of the coadjoint orbit. For convenience, we are using the isomorphism [ : g → g∗

defined via the Killing form of g. The converse isomorphism will be denoted ] : g∗ →
g. The corresponding generalisation of selective decay for the semidirect product
stochastic process (2.16), following [GBH14], is given by

d(µ, q) + ad∗(ξ,r)(µ, q) dt+ θ ad∗( ∂C∂µ ,
∂C
∂q )

[(
∂C

∂µ
,
∂C

∂q

)
, (ξ, r)

][
dt

+
∑
i

ad∗(σi,ηi)(µ, q) ◦ dW
i
t = 0,

(3.2)

where ξ = ∂h
∂µ

, and the quantities h and r are defined in equation (2.18). Equation

(3.2) may be written equivalently as a system of equations, by using the actions
given in (2.15). Namely,

dµ+ (ad∗ξµ+ ad∗rq) dt+ θ ad∗∂C
∂µ

[
∂C

∂µ
, ξ

][
dt+ θ ad∗∂C

∂q

(
ad ∂C

∂µ
r + ad ∂C

∂q
ξ
)[
dt

+
∑
i

(
ad∗σiµ+ ad∗ηiq

)
◦ dW i

t = 0

dq + ad∗ξq dt+ θ ad∗∂C
∂µ

(
ad ∂C

∂µ
r − ad ∂C

∂q
ξ
)[
dt +

∑
i

ad∗σiq ◦ dW
i
t = 0 .

(3.3)
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Recall for the deterministic equations that the energy decays for θ > 0 as

d

dt
h(µ, q) = − θ

∥∥∥ad ∂C
∂µ
ξ
∥∥∥2

− θ
∥∥∥ad ∂C

∂µ
r + ad ∂C

∂q
ξ
∥∥∥2

, (3.4)

where the second term is present only in the semidirect product setting [GBH14].

Remark 3.1. The selective decay approach preserves the entire coadjoint orbit, and
the speed of decay depends upon which invariant function C one uses in implementing
it. Indeed, either the first or second term of (3.4) can vanish depending on the choice
of Casimir. We refer to the heavy top example in Section 5 for more details.

Asymptotically in time, t→∞, the deterministic equations with selective decay
will tend toward a state which is compatible with the state of minimal energy, as
shown in [GBH14]. However, the presence of noise will balance the dissipation due
to selective decay and prevent the system from reaching this deterministic equilib-
rium position. This feature will imply a non-constant invariant distribution of the
corresponding Fokker-Planck solution to be studied in the next section, as well as the
existence of random attractors, for which we refer to [KCG15, SH98] for background
information.

3.2. The Fokker-Planck equation and invariant distributions. In order to
study the balance between multiplicative noise and nonlinear dissipation, we com-
pute the Fokker-Planck equation associated to the process (3.1) or, equivalently,
(3.3), and its invariant solutions.

The Fokker-Planck equation for the Euler-Poincaré stochastic process (3.1) is
modified by the double bracket dissipative term, to read as,

d

dt
P(µ) + {h,P}+ θ

〈[
∂P
∂µ
,
∂C

∂µ

]
,

[
∂h

∂µ
,
∂C

∂µ

]〉
− 1

2

∑
i

{Φi, {Φi,P}} = 0. (3.5)

The invariant distribution of this Fokker-Planck equation is no longer a constant on
the coadjoint orbits. Instead, it now depends on the energy, as summarized in the
following theorem.

Theorem 3.2. Let the noise amplitude be of the form σi = σei for an arbitrary
σ ∈ R, where the ei’s span the underlying vector space of the dual Lie algebra
g∗ ∼= g. The invariant distribution of the Fokker-Planck equation (3.5) associated to
(3.1) with Casimir C = κ(µ, µ) is given by

P∞(µ) = Z−1e−
2θ
σ2 h(µ), (3.6)

where Z is the normalisation constant that enforces
∫
P∞(µ)dµ = 1.

Proof. The invariant distribution is given by solving d
dt
P∞(µ) = 0. From the struc-

ture of the Fokker-Planck equation in double bracket form (3.5), the advection term
must vanish independently of the other terms. (See the argument of Theorem 2.1.)
We therefore use the Ansatz P∞(µ) = f(h(µ)), where the function f is to be de-
termined. Consequently, only the selective decay and the double bracket term still
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remain. The selective decay is first rewritten, using the bi-invariance property of
the Killing form (2.3), as

θ

〈[
∂P
∂µ
,
∂C

∂µ

]
,

[
∂h

∂µ
,
∂C

∂µ

]〉
= θ

〈
∂P
∂µ
, ad ∂C

∂µ

[
∂C

∂µ
,
∂h

∂µ

]〉
= θ d

(
f(h)ad ∂C

∂µ

[
∂C

∂µ
,
∂h

∂µ

])
,

where we have used the property that the coadjoint action for semi-simple Lie al-
gebras is divergence-free. (Notice that the exterior derivative d is a divergence
operation here.) Since κ(µ, µ) is a Casimir and µ] = ∂C

∂µ
, we can rewrite the double

bracket due to the noise as

−1

2

∑
i

{Φi, {Φi,P}} = −σ2 1

2

∑
i

〈
ad∗ei

∂C

∂µ

[

,
∂

∂µ

〈
ad∗ei

∂C

∂µ

[

,
∂P
∂µ

〉〉

(From bi-invariance of κ) = σ2 1

2

∑
i

d

(
f ′(h)adei

∂C

∂µ

〈
ad ∂h

∂µ

∂C

∂µ
, ei

〉)
= σ2 1

2
d

(
f ′(h)adad ∂h

∂µ

∂C
∂µ

∂C

∂µ

)
.

We have used the bi-invariance of the pairing to enforce the relation ad†ξη := ad∗ξη
[ =

−adξη. See for example [Var84] for more details. The result (3.6) for the equilibrium
distribution then follows by comparing the selective decay term with the double
bracket term and noticing that the two terms will cancel, provided f(x) = e−2θ x/σ2

.
�

Remark 3.3. This calculation only uses the bi-invariance of the Killing form, which
holds in general for semi-simple Lie algebras. Therefore, the same conclusion applies
for other Lie algebras which admit a bi-invariant pairing. In statistical mechanics,
the invariant measure (3.6) is often called the Gibbs measure.

The Fokker-Planck equation with dissipation in the semidirect-product setting
directly gives

d

dt
P(µ, q) + {h,P} − 1

2

∑
i

{Φi, {Φi,P}}+

+ θ

〈[(
∂P
∂µ
,
∂P
∂q

)
,

(
∂C

∂µ
,
∂C

∂q

)]
,

[(
∂h

∂µ
,
∂h

∂q

)
,

(
∂C

∂µ
,
∂C

∂q

)]〉
= 0 .

(3.7)

Consequently, for semidirect products, we have the analogue of the previous theorem,
but for the marginal invariant distribution on the advected quantities.

Theorem 3.4. Provided the Hamiltonian is of the form h(µ, q) = K(µ) + V (q) for
two functions K and V , the invariant marginal distribution P2

∞(q) with the selective
decay from the Casimir κ(µ, q) is given by

P2
∞(q) = Z−1e−

2θ
σ2 V (q), (3.8)

where Z is the normalisation constant.
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Proof. The proof here is similar to the proof for Theorem 3.2. Thus, we only show
the main calculations. First, the selective decay term is given explicitly, using the
Casimir κ(µ, q), by

θ
〈

ad ∂P
∂µ
q, adξq

〉
+ θ

〈
ad ∂P

∂µ
µ+ ad ∂P

∂q
q, adξµ+ adrq

〉
.

Integrating the selective decay term of (3.7) in µ and assuming P2(q) = f(V (q)),
gives

θ

〈
ad ∂P2

∂q

q, adrq

〉
= −θ

〈
ad∗adrqq,

∂P2

∂q

〉
= −θd

(
ad∗adrqqf

)
,

where we have used the bi-invariance property of κ (2.3), as well as the divergence-
free property of the coadjoint action. Then, after integration over µ, the double
bracket term becomes

−1

2
σ2d

(
ad∗eiq

〈
ad∗eiq,

∂P2

∂q

〉)
=

1

2
σ2d

(
f ′ad∗eiq 〈adqr, ei〉

)
= −1

2
σ2d

(
f ′ad∗adrqq

)
,

upon again using bi-invariance. Thus, the result follows, as f must satisfy θf =
1
2
σ2f ′. �

In the Euler-Poincaré setting, the invariant distribution was concentrated around
the positions of minimum energy, and here the advected quantity q is concentrated
around the position of minimal potential energy. We conjecture that the complete
invariant distribution is concentrated around the minimal energy region, as in the
Euler-Poincaré setting. However, we will not investigate this conjecture here, as we
will be mainly interested in the dynamics of the advected quantities.

3.3. Random attractors and Sinai-Ruelle-Bowen measures. We now turn to
the study of the existence of random attractors (RAs) in our stochastic dissipative
systems, and its connection with the theory of random dynamical systems (RDS).
The classic approach in studying the effect of stochastic forcing of nonlinear dynam-
ical systems is by integrating the system forward in time and performing averages
and then study the Fokker-Planck equation, as we have done up to now. A second
point of view studies random dynamical systems via the so-called pull-back approach.
We will not fully explore the theory of random dynamical systems and pull-back at-
tractors here, but only invoke the main results from it and refer the interested reader
to [Arn95, BDV06, KR11] for an in depth account of these subjects. In a nutshell,
the realisation of the noise is fixed for each stochastic process and the average is
taken over the initial conditions, but not over the realisation of the noise. The noise
makes the system time-dependent; so the notion of attractor must be defined in
the pull-back sense, such that for large times the attractive set does not depend
on time. The pull-back attractor is thus defined by pulling back the same initial
conditions from t = 0 to t → −∞ and letting the system evolve to t = 0. In the
limit, the set obtained at t = 0 is the pull-back attractor. In random dynamical
systems theory, it is usually called a random attractor, and if it is not singular, it
may admit a particular measure, the Sinai-Ruelle-Bowen measure (SRB), which is
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also called a physical measure, see [You02]. We will denote the physical measure by
Pω(µ) for a given realisation of the noise ω and relate it to the invariant measure of
the Fokker-Planck equation P∞(µ) by the formula∫

Ω

Pω(µ)dω = P∞(µ), (3.9)

for the probability space Ω. Here we are informally referring to probability densities,
and the SRB measure can be seen as the invariant measure most compatible with
volume, although volume in phase space is not preserved, because of dissipation.

Remark 3.5. We are considering the interaction of noise and dissipation. However,
if the noise were replaced by a simpler deterministic forcing, similar results would
emerge. In particular, periodic forcing or kicking of dissipative dynamical systems
has been studied in great detail in numerous works, e.g., in [LY10, LWY13]. In our
present setting, periodic kicking could also be implemented instead of noise. This
might help for the understanding of basic mechanisms of the random attractors such
as stretching and folding, as some solutions could perhaps be found explicitly. See
the examples in Sections 4 and 5 where different types of random attractors are
found. We have left such deeper studies for future investigations and will only treat
the general case of noise here.

We first determine that the stochastic processes (3.1) and (3.3) do indeed admit
random attractors. See [KCG15, SH98] and references therein for more details about
this type of approach. Then, we will give the region of the parameter space (θ, σ)
where non-singular random attractors exist.

Theorem 3.6. The stochastic process (3.1) admits a random attractor, for every
Lie group G.

Proof. We recast the SDE (3.1) into a random dynamical equation (RDE) using the
Wiener processes zi given by

dzi = σidW
i
t , (3.10)

where zi must be understood as a one dimensional process in the direction i (corre-
sponding to σi). In the sequel, we will denote z(t, ω) =

∑
i zi(t, ω) ∈ g. The process

z(t) thus defines a random path in the Lie algebra g and, via the exponential map,
a random path in the group G as g(t, ω) = ez(t,ω).

We then define a new variable µ̃(t) = g(t)µ(t) = Ad∗g(t)µ(t) and we have, from
(3.1) (see for example [MR99]),

dµ̃(t) = Ad∗g(t)

(
−
∑
i

ad∗σiµ ◦ dW + dµ

)
= Ad∗g(t)

(
F (Ad∗g(t)−1µ̃(t))

)
dt,

where our stochastic process is generically written dµ = F (µ)dt + Gi(µ) ◦ dWi for
convenience. From here, we have the RDE associated to (3.1) of the form

d

dt
µ̃(t) = F̃ (µ̃(t), g(t)), (3.11)
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where F̃ is defined from the previous calculation. Recall that from the theory of
selective decay we have [GBH13]

d

dt
h(µ) = − θ

∥∥∥∥[∂C∂µ , ∂h∂µ
]∥∥∥∥2

,

and h(Ad∗gµ) = h(µ) so that this equality becomes for (3.11),

d

dt
h(µ̃) = −θ

∥∥∥∥[Adg−1

∂C(µ̃)

∂µ̃
,Adg−1

∂h(µ̃)

∂µ̃

]∥∥∥∥2

≤ 0 . (3.12)

This inequality assures that the energy decays with a random strictly negative
bound. The existence of the random attractor then follows from a standard ar-
gument, demonstrated, for example, in [SH98] or [KCG15], for another application
in the linear case. �

The idea of the proof is to generalise the linear change of variables used to recast
the original stochastic process into a random dynamical equation to allow a nonlinear
group theoretical change of variable. The dissipative property is directly given by
the selective decay theory, and the invariance of the dynamical equation under the
group action. This theorem is very general and no specific assumptions on the
Lie group need to be imposed. In particular, modulo difficulties in analysis, the
theorem should also apply for the diffeomorphism group used in the description of
compressible fluid equations. However, we have no intention of investigating the
infinite dimensional theory here.

The same result persists in the semidirect-product theory, as developed earlier.

Corollary 3.6.1. Theorem 3.6 applies to semidirect-product stochastic processes
(3.3).

Proof. The proof follows the same argument, upon using the action of the group
G and the Lie algebra g and the advected quantities in V to define the change of
variables. The decay rate of the energy is given by using the deterministic selective
decay formulae (3.4). �

3.4. Existence of the SRB measure. We now turn to the existence of the
SRB measure. Theorem 3.7 below for the existence of SRB measures will invoke
Hörmander’s theorem about the smoothness of transition probabilities for a diffu-
sion satisfying the so-called Hörmander (Lie) bracket conditions. The Lie bracket
[v, w](x) of two vector fields v(x), w(x) in Rn is defined as

[v, w](x) = Dv(x)w(x)−Dw(x)v(x), (3.13)

where we denote by Dv the derivative matrix given by (Dv)ij = ∂jvi = vi,j. Given
an SDE of the form

dx = A0(x) +
∑

Ai(x) ◦ dW i
t , (3.14)

the parabolic Hörmander condition states that if the following condition is satisfied

∪k≥1 Vk(x) = Rn, for all x , (3.15)
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where
Vk(x) = Vk−1(x) ∪ span{[v(x), Aj(x)] : v ∈ Vk−1, j ≥ 0} and

V0(x) = span{Aj, j ≥ 1} ,
(3.16)

then the law of the solution to (3.14) has a smooth density with respect to Lebesgue
measure. The distinction between V0 and the remaining vectors is unnecessary: one
can extend these vector fields to Rn+1 and regard them all on equal footing.

We are now able to prove the following theorem for our stochastic dissipative
systems.

Theorem 3.7. If the largest Lyapunov exponent of (3.1) is positive, the random
attractor is the support of a Sinai-Ruelle-Bowen (SRB) measure.

Proof. The proof uses the corollary of Theorem B in [LY88], which assumes the
existence of a random attractor. The only point left to show here is that the parabolic
Hörmander condition (3.15) is fulfilled. Given the Stratonovich process (3.14) in g∗,
we only need to check that the vector fields A1, . . . , AN will span the tangent space
to the coadjoint orbits as long as N is sufficiently large. Since Ai(µ) := ad∗σiµ, they
are tangent to the coadjoint orbits. The minimal number of Ai needed cannot be
found, in general, as it will depend on the Lie symmetry algebra and the form of
the Hamiltonian. Nevertheless, in our case the 〈σi〉 span the vector space g, and the
Hörmander condition is fulfilled.

�

Corollary 3.7.1. Theorem 3.7 also applies for the semidirect product case, even
with ηi = 0.

Proof. The same argument works here, even if ηi = 0, as the semidirect product
structure will automatically span the whole space, provided g is already spanned
and h is not too degenerate on V . �

3.5. Lyapunov exponents. We now determine the region of the parameter space
(σ, θ), for a given Lie algebra and Hamiltonian, where we are guaranteed that at
least one of the Lyapunov exponents is positive. Having the positivity of the top
Lyapunov exponent allows us to use the previous Theorem 3.7 to prove the existence
of a non-singular random attractor with a SRB measure and positive entropy.

We will restrict ourselves here to the estimation of the lower bound of the sum
of the Lyapunov exponents using the multiplicative ergodic theorem (MET), see
[Arn95] for more details.

The stochastic systems which we can consider here are written on compact semi-
simple Lie algebras, such that c2 = ‖µ‖2 is constant and defines a bounded set. The
energy functional h(µ) is also a generic quadratic kinetic energy term, with a given
inertia tensor I−1, corresponding to the Hessian matrix of h(µ).

Theorem 3.8. Provided the Lie algebra is compact and semi-simple, the sum of the
Lyapunov exponents is estimated from below by∑

i

λi ≥
1

2
|ε|nσ2 − θc2I−1

min + θ|ε|E∞h(µ). (3.17)
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where c = ‖µ‖2, ε is the Killing form constant, and n is the number of σi = σei
spanning the Lie algebra. Thus, the dimension of the Lie algebra, n = dim(g).
The quantity I−1

min is the largest eigenvalue of the Hessian of the Hamiltonian. The
expectation E∞ is taken with respect to the invariant measure P∞. An estimation
from above is also valid, using I−1

max, the minimal eigenvalue, instead.

Proof. Let us denote the stochastic process (3.1) in Itô form by

dµ = F (µ)dt+
∑
i

Gi(µ)dW i
t .

The Multiplicative Ergodic Theorem (MET) states that [Arn95]∑
i

λi = lim
t→∞

1

t
log detDϕ(t, ω, x) , (3.18)

where ϕ is the flow of the stochastic process and Dϕ stands for its derivative (the
Jacobian matrix). We can then use Jacobi’s formula to rewrite (3.18) as

lim
t→∞

1

t
log detDϕ(t, ω, x) = lim

t→∞

1

t
Tr

∫ t

DF (ϕ(t, x, ω))ds . (3.19)

Finally, ergodicity of this process gives∑
i

λi =

∫
Tr(DF (µ))P∞(µ)dµ , (3.20)

where P∞ is the invariant measure of the underlying stochastic process. The calcu-
lation of the trace simplifies in the case of a compact semi-simple Lie algebra with
the Killing form Tr(adAadB) = εA · B, where ε < 0 depends on the Lie algebra.
Then, using the explicit form of F along with semi-simplicity for g, yields

F (µ) = ad ∂h
∂µ
µ+ θ adµadµ

∂h

∂µ
− 1

2

∑
i

adσiadσiµ .

Consequently, we arrive at

Tr(DF (µ)) = Tr

(
−θ adµad ∂h

∂µ
+ θ adµadµ

∂2h

∂µ2
− 1

2

∑
i

σ2adeiadei

)
= |ε|θh(µ) + θA(µ, µ) +

1

2
|ε|nσ2,

where n is the number of σi fields. The A(µ, µ) term depends on the Lie algebra
structure constants, and is difficult to obtain explicitly for every compact semi-simple
Lie algebra. However, we can estimate it here using

θκ(µ, µ)I−1
max ≥ θTr

(
θadµadµ

∂2h

∂µ2

)
≥ θκ(µ, µ)I−1

min. (3.21)

Collecting terms then gives a lower and upper bound for the sum of the Lyapunov
exponents (3.17). �

Notice that if c, the norm of the momentum map, increases in (3.17), the effect
of the dissipation increases, which in turn decreases the sum of the Lyapunov ex-
ponents, since θ > 0. Likewise, if the moment of inertia increases, the effect of
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the dissipation decreases. Consequently, for fixed moment of inertia and speed, the
balance between θ and σ2 gives the sign of the sum of Lyapunov exponents. The last
term is the total energy, and gives a term in favour of the noise, because it is positive
and if the damping increases, then this quantity decreases, as P∞ concentrates in
the low energy regions.

Theorem 3.8 only gives a lower bound for the sum of the Lyapunov exponents
of an arbitrary compact semi-simple Lie algebra. A precise value can be computed
explicitly for each Lie algebra, by using the structure constants to calculate the term
A(µ, µ). We will show this calculation in the case of SO(3) in the free rigid body
example in Section 4.

Remark 3.9. This argument does not apply for non-compact semi-simple Lie al-
gebras, as c is not bounded from above. It is possible that another argument exists
for the top Lyapunov exponent, but so far we have not been able to find a useful
estimate.

We now turn to the semidirect product structure and also estimate the sum of
the Lyapunov exponents in the following theorem.

Theorem 3.10. The sum of the Lyapunov exponents for the semidirect stochastic
process (3.3) with Casimir C(µ, q) = 1

ε
κ(q, q) = c2 is given by∑

i

λi ≥ |ε|nσ2 − θc2I−1
min. (3.22)

Proof. We follow closely the proof for the Euler-Poincaré case. Let us denote the
stochastic process (3.3) in Itô form by

d(µ, q) = [F µ(µ, q) + F q(µ, q)] dt+
∑
i

[Gµ
i (µ, q) +Gq

i (µ, q)] dW
i
t ,

where we denoted F µ (resp. F q) the µ (resp. q) component of F . The MET theorem,
Jacobi’s formula and ergodicity of this process gives∑

i

λi =

∫
Tr [DµF

µ(µ, q) +DqF
q(µ, q)]P∞(µ, q)d(µ, q), (3.23)

where P∞(µ, q) is the invariant measure of the underlying stochastic process, and
Dµ and Dq denotes the Jacobian matrices taken with respect to µ or q respectively.
We obtain

Tr(DµF
µ +DqF

q) = Tr

(
−θadqadqI−1 + σ2

∑
i

adeiadei

)
,

and, using again (3.21), we have the result (3.22).

�

Remark 3.11. Note that because the energy is always bounded, reversing the sign
of θ will not affect the results on the existence of the random attractor. However, the
system will be attracted to the maximum energy position rather than the minimum
energy.
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This section has been devoted to the study of the interaction of multiplicative noise
and nonlinear dissipation on coadjoint orbits. In this section, we added a double
bracket dissipation mechanism to the previously derived stochastic process in order
to, again, preserve the coadjoint orbit structure where the solution of the stochas-
tic process are supported. In the case of semi-simple Lie algebras we obtained the
invariant measure of the Fokker-Planck equation and found the associated Gibbs
measure on the coadjoint orbits. In the semidirect product case, this result was
shown to hold for the marginal distribution on the advected quantity only, where
the Gibbs distribution depends only on the potential energy. We then proved the
existence of random attractors for a wide class of systems using the dissipative prop-
erty of the double bracket dissipation, the Hörmander condition on the generating
vector field and an ergodic theorem to prove the positivity of the sum of the Lya-
punov exponents. In the next two sections we will study two concrete examples of
stochastic deformations of the Euler-Poincaré dynamical equation, for the free rigid
body and the heavy top, using both analytical and numerical tools.

4. Euler-Poincaré example: the stochastic free rigid body

This section treats the classic example of the Euler-Poincaré dynamical equation;
namely, the equation for free rigid body motion. There has been active interest in
stochastic models for stochastic rigid body models arising in different fields of appli-
cation such as nanoparticles [STKH15, BBR+06], molecular biology [GHC09], poly-
mer dynamics [Chi09][Section 13.7], filtering in aeronautics: guidance and tracking
[Wil74]. We refer to [Chi12, Chi09] for more applications. A source of models for sto-
chastic dynamics stems from the so-called rotational Brownian motion of molecules.
Rotational Brownian motion comprises the random change in the orientation of a
polar molecule due to collisions with other molecules and is an important element in
the theory of dielectric materials. Perrin and Debye’s non-inertial theories are the
most well-known models, see for example [Chi09][section 16.3]. Rotational Brown-
ian motions have also been observed in a laboratory setting and have been properly
documented in [HAN+06]. Much of the current research in rotational Brownian
motions is devoted to inertial models, non-spherical molecules and possibility of
dipole-dipole interactions. Walter et al. [WGM10] took a step further in proposing
an inertial, Langevin type of generalisation to the rigid body equations aiming at
studying systems of rigid bodies as models for polymer dynamics. The coupling
between linear and rotational dynamics was important in this case, to capture the
motion features of long polymeric chains. Their models assume linearity in the noise
for both linear and angular momentum variables, whereas the model used here is
fully nonlinear with multiplicative noise and preserves strong geometrical features
such as the coadjoint orbits.

Remark 4.1 (The LLG equation). We mention that the stochastic Landau-Lipschitz-
Gilbert (LLG) equation studied for example in [Gar97, BGJ12, KRVE05] has the
same structure as our stochastic dissipative rigid body equation. Indeed, we preserve
the coadjoint orbit, thus the length of the momentum variable, which corresponds to
the strength of magnetic moments in the LLG model. We will not study this link
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further here as the LLG equation is a PDE in two or three dimensions and requires
different analytical methods than the rigid body equation.

4.1. The stochastic rigid body. The canonical example for illustrating the Euler-
Poincaré reduction by symmetry is the free rigid body described by the group of
rotations SO(3). For a complete treatment from the viewpoint of reduction we refer
to [MR99], For simplicity here, we rely on the isomorphism so(3) ∼= R3 which trans-
lates the commutator in the Lie algebra to the cross product of three-dimensional
vectors, via [A,B] → A × B, where R3 vectors are denoted with bold font. This
allows us to use a slightly different Killing form than the canonical one. Namely, we
shall use the scalar product as our pairing, via the formula A ·B = −1

2
κ(A,B).

The reduced Lagrangian of the free rigid body is written in terms of the angular
velocity Ω ∈ so(3) and a prescribed moment of inertia I ∈ Sym(3) as

l(Ω) =
1

2
Ω · IΩ :=

1

2
Ω ·Π , (4.1)

where the angular momentum Π is defined accordingly and the Legendre transform
gives the reduced Hamiltonian h(Π) = 1

2
Π I−1Π. We take the stochastic potential

to be linear in the momentum variable Π

Φi(Π) =
3∑
i=0

σi ·Π , (4.2)

where the constants σi generically span R3 but can be chosen in various ways. The
stochastic process for Π is then computed from (2.7) to be

dΠ + Π×Ω dt+
∑
i

Π× σi ◦ dW i
t = 0, (4.3)

and the corresponding Itô process is

dΠ + Π×Ω dt+
1

2

∑
i

(Π× σi)× σi dt+
∑
i

Π× σi dW i
t = 0. (4.4)

The coadjoint orbit defined by a level set of the quadratic Casimir ‖Π‖2 = c2 is
preserved in our geometrical construction, as may be checked by a direct computa-
tion in both the Stratonovich and the Itô stochastic representations. Although the
Casmir is conserved, the energy h(Π) = l(Ω) is not a conserved quantity in general.
Indeed, since the moment of inertia I is a symmetric matrix, the stochastic process
associated to h can be found to be

dh =
∑
i

(Π× σi) · [I−1(Π× σi)− (Ω× σi)] dt+ 2
∑
i

(Π× σi) ·Ω dW i
t . (4.5)

In the general case, one only has bounds for the energy given by the two stable
equilibrium positions of the rigid body, namely Emin = 1

2I3
|Π3(0)|2 and Emax =

1
2I1
|Π1(0)|2 if I1 ≤ I2 ≤ I3. Thus, the energy may randomly fluctuate within these

bounds.

Apart from the obvious case of I = Id, one can check that the system with
I = (I1, I1, I3) and σ = (0, 0, σ3) conserves the energy for every values of I1, I3 and
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σ3 . In this case, the stochastic rigid body reduces to the Kubo oscillator of [KTH91]

dΠ1 = Π2(aΠ3dt+ χ3 ◦ dW ), dΠ2 = −Π1(aΠ3dt+ χ3 ◦ dW ) and dΠ3 = 0,

where a := I−I3
I I3

. This system is integrable by quadratures and a solution is

Π1(t) = Π1(0) cos(γt+ χ3Wt)− Π2(0) sin(γt+ χWt),

Π2(t) = Π2(0) cos(γt+ χ3Wt) + Π1(0) sin(γt+ χWt),

where γ := aΠ3. Although the deterministic free rigid body is integrable, the only
known integrable stochastic rigid body is this particular case, which reduces to the
Kubo oscillator.

4.2. Fokker-Planck equation. The Fokker-Planck equation of the process (4.3)
is simply given for a probability density P by

d

dt
P + (Π×Ω) · ∇P +

1

2

∑
i

(Π× σi) · ∇[(Π× σi) · ∇P] = 0 , (4.6)

where ∇ := ∇Π is the gradient with respect to the independent variable Π ∈ R3.
According to Theorem 2.1, the invariant, or limiting distribution P∞ is constant on
coadjoint orbits, which are spheres.

Based on this result, more can be said about the energy evolution of the stochastic
rigid body, without embarking on any deeper studies into the coupled stochastic
processes 4.5 and (4.3). For example, by ergodicity of (4.3), the long time average
of the stochastic rigid body motion follows the limiting distribution P∞. In terms of
energy, the distribution is not uniform, but will be proportional, at a given energy,
to the length of the deterministic trajectory of the rigid body with this energy. This
can be visualized with the Monte-Carlo simulations of Figure 1. The energy will
thus randomly oscillate between two bounds, with a higher probability to be near
the energy of the unstable equilibrium.

4.3. Double bracket dissipation. The double bracket dissipation for the rigid
body involves the only Casimir ‖Π‖2 and gives, with noise, the dissipative stochastic
process

dΠ + Π×Ω dt+ θΠ× (Π×Ω) dt+
∑
i

Π× σi ◦ dW i
t = 0. (4.7)

The Itô formulation is similar to (4.4) and will not be written here. The correspond-
ing the Fokker-Planck equation is

d

dt
P + (Π×Ω) · (∇P− θΠ×∇P) +

1

2

∑
i

(Π× σi) · ∇[(Π× σi) · ∇P] = 0. (4.8)

The Fokker-Planck equation for stochastic rigid body dynamics with selective
decay may be found by specialising the general proof given for Theorem 3.2. Indeed,
we can rewrite the Fokker-Planck equation as

d

dt
P + (Π×Ω) · ∇P +∇ ·

(
θΠ× (Π×Ω)P− 1

2
σ2 Π× (Π×∇P)

)
= 0 , (4.9)
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Figure 1. We display the time evolution of the probability distribution

function of the stochastic process (4.5) driving the energy E. The yellow

regions correspond to a value of p = 0.1. The vertical lines represent the

energy of the three equilibrium points of the deterministic rigid body and

the top panel displays the profile of the distribution function at t = 100.

In both simulations we used I = (1, 2, 3), σi = ei, dt = 0.01 and 5 · 104

runs of the stochastic rigid body. The left panel has the initial condition

in spherical coordinates Π = (2,−1) and on the right Π = (0, 1). In

both cases the distribution tends to the same limiting distribution. That

the highest density occurs near the middle axis of the rigid body may be

explained by noting that the orbits of this energy are longer than the others.

where we have used ∇ · (Π× (Π×Ω)) = 0. The last term in (4.8) simplifies as∑
i

(Π× ei)[(Π× ei) · ∇P] =
∑
i

(Π× ei)[(∇P×Π) · ei] = Π× (∇P×Π),

since the sum over i is simply the decomposition of the vector (∇P×Π) into its ei
components. Consequently, the asymptotic equilibrium solution tends to

P∞ = Z−1e−
2θ
σ2 h(Π) , (4.10)

in which the overall sign of the exponential argument is negative, since θ > 0. We
display in Figure 2 the limiting distribution of the Fokker-Planck equation (4.8)
where the higher probabilities are around the stable equilibrium of minimal energy.

4.4. Random attractor. For so(3), we can go beyond Theorem 3.8 to obtain the
exact value of the sum of the Lyapunov exponents.

Proposition 4.2. The sum of the Lyapunov exponents can be given exactly as∑
i

λi = 3σ2 + θ
(
c2Tr I−1 − 6E∞h

)
, (4.11)

where c is the value of the Casimir function, and θ > 0.
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Figure 2. We display two invariant measures of the Fokker-Planck equa-

tion of the dissipative stochastic free rigid body equation (4.7) with different

parameters θ = 0.5, 1 for σ = 0.5. The density is higher (in yellow) in the

lower energy regions and lower (in black) in the higher energy regions.

Proof. We can compute the term A of Theorem 3.8 exactly with the structure con-
stants cijk = εijk

−A(Π,Π) = −Tr(adΠadΠI−1) = −cimn cjnm I−1ΠiΠj

= Π2
1(I−1

2 + I−1
3 ) + Π2

2(I−1
1 + I−1

3 ) + Π2
3(I−1

1 + I−1
2 ),

which, when combined with the Hamiltonian, yields the result in equation (4.11). �

We display in Figure 3 the condition of positivity of the sum of the Lyapunov
exponents, computed with Monte-Carlo method for estimating the expectation of
the energy on the momentum sphere.
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Figure 3. We display the value of the sum of the Lyapunov exponents

for I = (1, 2, 3) and two values of c = ‖Π‖ in the (θ, σ2) plane. A positive

value implies the existence of a SRB measure on a non singular random

attractor.

This result, along with the theorem of existence of SRB measure, guaranteed by
the fact that σi spans R3, and the dissipation of energy together give the condition
required for the existence of a non-singular random attractor.

With the help of numerical simulations, we display in Figure 4 a realisation of a
random attractor of the rigid body.1

1See http://wwwf.imperial.ac.uk/~aa10213/ for a video of this random attractor.

http://wwwf.imperial.ac.uk/~aa10213/
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The plots in Figure 4 show the SRB measure, in log scale and exhibit the phe-
nomena of stretching and folding, typical of strange attractors with a positive and
negative Lyapunov exponent. The positive exponents produces the stretching mech-
anism and the negative ones produce the folding process. Asymptotically in time,
these mechanisms may create a fractal, similar to Smale horseshoe structure, for the
two dimensional random attractor. A more detailed study of this random attractor
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Figure 4. The four panels display snapshots of the same rigid body

random attractor with I = diag(1, 2, 3), θ = 0.5 and σ = 0.5. The simula-

tion started from a uniform distribution of rigid bodies on the momentum

sphere and create finer and finder structures. The color is in log scale and

we simulated 400 000 rigid body initial conditions with a split step scheme.

will certainly be interesting, but is out of the present scope of this work as it would
require deeper dynamical systems analysis.

5. Semidirect product example: the stochastic heavy top

The basic example of the geometric mechanism for semidirect product motion is
the heavy top, which arises in the presence of gravity, when the support point of
a freely rotating rigid body is no longer at its centre of mass. The starting phase
space for the heavy top is T ∗SO(3), just as for the free rigid body. When the support
point is shifted away from the centre of mass, gravity breaks the symmetry, and the
system is no longer SO(3) invariant. Consequently, the motion can no longer be
written entirely in terms of the body angular momentum Π ∈ so(3)∗. One also
needs to keep track of the unit vector Γ, the “direction of gravity” as seen from
the body (Γ = R−1k where the unit vector k points upward in space and R is the
element of SO(3) describing the current configuration of the body). The variable
Γ may be identified with elements in the coset space SO(3)/SO(2), where SO(3)
is the symmetry broken by introducing a special vertical direction for gravity, and
SO(2) is the remaining symmetry. This SO(2) is the isotropy subgroup of SO(3)
corresponding to rotations around the unit vector k which leave the direction of
gravity invariant.
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5.1. The stochastic heavy top. The Lagrangian for the heavy top is the differ-
ence of the kinetic energy and the work against gravity, where the fixed vector χ
represents the position of the centre of mass of the body with respect to the fixed
point. In body coordinates, the reduced Lagrangian is

l(Ω,Γ) =
1

2
Ω · IΩ−mgΓ · χ . (5.1)

We refer to see [HMR98, MR99] for a complete description of the semidirect product
reduction for the heavy top that we will not explain here. The stochastic potential
will be taken to be linear in both the Γ and Π:

Φi(Γ,Π) = σi ·Π + ηi · Γ , (5.2)

where σi and ηi need not span R3. The stochastic process describing the stochastic
heavy top is then

dΠ + (Ωdt+
∑
i

σi ◦ dW i
t )×Π +mg(Γ× χ)dt+

∑
i

mg(Γ× ηi) ◦ dW i
t = 0 ,

dΓ + (Ωdt+
∑
i

σi ◦ dW i
t )× Γ = 0 ,

(5.3)

and the corresponding Itô process is

dΠ + (Ωdt+
∑
i

σidW
i
t )×Π + (Γ×mgχ)dt

+
∑
i

mg(Γ× ηi) ◦ dW i
t −

1

2

∑
i

σi × (σi ×Π)dt = 0 ,

dΓ + (Ωdt+
∑
i

σidW
i
t )× Γ− 1

2

∑
i

σi × (σi × Γ)dt = 0 .

(5.4)

The two Casimirs of the heavy top are conserved, ‖Γ‖2 = k and Π · Γ = c.
However, the energy is not conserved, as it satisfies the following stochastic process

d

dt
E =

1

4

∑
i

[
Ω · (σi × (σi ×Π)) + Π · I−1(σi × (σi ×Π))

]
dt

+
1

2

∑
i

[
(Π× σi) · I−1(Π× σi)−mg(σ × Γ) · (χ× σi)

]
dt

+
1

2

∑
i

[
Ω · (Π× σi) + Π · I−1(Π× σi) + 2χ · (Γ× σi)

]
dW i

t .

(5.5)

The energy being only bounded from below, this stochastic process can lead to
arbitrary large value for the energy, over a long enough time.

5.2. The integrable stochastic Lagrange top. When I is of the form I =
diag(I1, I1, I3) and χ = (0, 0, χ3), the deterministic heavy top is called the Lagrange
top and is integrable. The integrability comes from the extra conserved quantity
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Π · χ, in this case. For noise, the stochastic process for this quantity is

d

dt
(Π · χ) = −1

2

∑
i

(χ× σi) · (σi ×Π) dt−
∑
i

χ · (Π× σi)dW i
t , (5.6)

which is not a conserved quantity in general. However, the form of this equation
implies that if one selects σi = χ then Π ·χ is a conserved quantity. It is remarkable
that with this choice of noise, the energy is also a conserved quantity, as one can
check from equation (5.5). We thus have a stochastic integrable Lagrange top, with
a stochastic Lax pair given by

d(λ2χ+ λΠ + Γ) = ((λχ+ Ω)dt+ χ ◦ dW )× (λ2χ+ λΠ + Γ), (5.7)

where λ is arbitrary and called a spectral parameter. We refer to [Rat81] for more
details about the integrability of the Lagrange top. Following the framework of
integrable hierarchies, further developed for infinite dimensional integrable hierar-
chies in [Arn15], there exists another integrable stochastic Lagrange top where the
stochastic potential is the same as the Hamiltonian. The explanation for the inte-
grability is straightforward, as the change of variable t→ t+Wt maps the stochastic
Lagrange top to the deterministic one; so we will not discuss it in more detail here.
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Figure 5. This figure displays a realisation of the motion of the integrable

stochastic Lagrange top. The conserved quantities are displayed in the

right panel.

We want to study this stochastic system further, as integrability means that an
explicit solution can be found. Indeed, from the standard theory of the heavy top,
see for example [Arn89, Aud96], the equation for Γ3 can be found to be of the form
Γ̇2

3 = f(Γ3), where f depends only on the constants of motion k and c. Then, a
straightforward calculation with Euler angles gives

ψ̇ =
c− kΓ3

(1− Γ2
3)I

dφ =

[
c

I3Γ3

− c− kΓ3

I3Γ3(1− Γ2
3)I

((1− Γ2
3)I − I3Γ2

3)

]
dt− χ3 ◦ dW ,

(5.8)

where cos(θ) = Γ3 gives the third Euler angle. Surprisingly, only φ has a stochastic
motion, while ψ and θ follow the deterministic Lagrange top motion. This is illus-
trated in Fig. 5 via a numerical integration of the stochastic Lagrange top equations.
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The conservation of all the Lagrange top quantities is reproduced, as well as the fact
that the noise only influences the φ component of the Euler angles.

5.3. The Fokker-Planck equation and invariant measures. We now analyse
the associated Fokker-Planck equation for the stochastic heavy top, which is given
by

d

dt
P(Π,Γ) = (Π×Ω) · ∇ΠP + (Γ×Ω) · ∇ΓP

+
∑
i

1

2
(Π× σi) · ∇Π [(Π× σi) · ∇ΠP]

+
∑
i

1

2
(Γ× σi) · ∇Γ [(Γ× σi) · ∇ΓP]

+
∑
i

1

2
(Π× σi) · ∇Π [(Γ× σi) · ∇ΓP]

+
∑
i

1

2
(Γ× σi) · ∇Γ [(Π× σi) · ∇ΠP] ,

(5.9)

where in our notation ∇Π denotes the gradient with respect to the Π variable only
and similarly for ∇Γ. By using the semidirect product Lie-Poisson structure of the
heavy top

{H,G}HT :=
[
∇ΠH ∇ΓH

] [Π× Γ×
Γ× 0

] [
∇ΠG
∇ΓG

]
, (5.10)

the Fokker-Planck equation (5.9) can be written in the double bracket form

d

dt
P = {h,P}HT +

1

2
{Φ, {Φ,P}HT}HT , (5.11)

where h(Π,Γ) is the Legendre transform of (5.1).

Recall that the invariant marginal distribution on the Γ sphere is constant. We
study here the distribution in the Π coordinate, following the general argument of
Theorem 2.2, which gives the bound

0 ≤ ‖Π‖(t) ≤ ‖Π0‖+ (mgc)t. (5.12)

This bound increases linearly with time and is unbounded only when t→∞. This
effect is clearly illustrated in the Figure 6 where the probability distribution of ‖Π‖2

is plotted. The initial conditions are uniform distribution on the Γ sphere and a
single position for all the momentum, with unit norm. Our system parameters are
m = g = c = 1. Consequently, the linear bound is directly proportional to the time.
According to Figure 6, the bound is reached almost immediately in the first stage
of the diffusion, where the Γ and Π sphere are not yet uniformly covered. After this
first short temporal regime, however, the diffusion rate slows considerably below this
linear bound.
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Figure 6. We display the probability distribution of the norm of the

momentum of the heavy top, as a function of time. The distribution tends

to 0 as time goes to ∞, but only linearly as shown by equation (5.12) and

the white line in this Figure. The expansion is larger for small time, as the

distribution is not yet uniform on the angles of the momentum but linearly

bounded in time. After this rapid early expansion, the diffusion slows

considerably.

5.4. Random attractor. The dissipative heavy top equations can be computed
directly from the semidirect theory (see also [BKMR96]) and in Stratonovich form
they read, when the Casimir Π · Γ is used,

dΠ + (Ωdt+
∑
i

σi ◦ dW i
t )×Π +mg(Γ× χ)dt

+ θΓ× (Ω× Γ)dt+ θ [mgΠ× (χ× Γ)−Π× (Π×Ω)] dt = 0 ,

dΓ + (Ωdt+
∑
i

σi ◦ dW i
t )× Γ + θ [mgΓ× (χ× Γ)− Γ× (Π×Ω)] dt = 0 .

(5.13)

Notice that the two Casimirs which define the coadjoint orbits are preserved by both
the noise and the dissipation, as expected. Also recall the form of the deterministic
energy decay

dh

dt
= −θ ‖Ω× Γ‖2 − θ ‖Ω×Π +mgχ× Γ‖2 , (5.14)

which was used earlier to prove the existence of the random attractor after a nonlin-
ear change of variables. The other Casimir ‖Γ‖2 can also be used to derive dissipative
equations, but energy dissipation will be slower, as only the first term in (5.14) and
the first decay term of the dΠ are left.

We can now compute the lower bound for the value of the sum of the Lyapunov
exponents using Theorem 3.10 to find∑

i

λi ≥ 6σ2 + θc2Tr(I−1) . (5.15)

Figure 7 displays four snapshots of a random attractor for the stochastic heavy top.2

on the Γ sphere, with parameters θ = 0.4 and σ = 0.8. The random attractor lives

2See http://wwwf.imperial.ac.uk/~aa10213/ for a video of this random attractor.

http://wwwf.imperial.ac.uk/~aa10213/
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in a four dimensional space, and clearly has different properties than the two di-
mensional rigid body attractor. In particular, it does not exhibit fractal structures
created by the stretching and folding mechanism. Instead, it forms a rather com-
plicated object in 4 dimensions. Further studies of this object will be undertaken
elsewhere and will require more advanced tools from dynamical system theory.
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Figure 7. The figure displays four snapshots of a heavy top random

attractors, projected onto the Γ sphere. The initial conditions are 25 000

heavy top uniformly distributed on the Γ sphere and all the same in the Π

direction.

6. Two other examples

This section briefly sketches two other stochastic symmetry-reduced examples of
the present theory which follow immediately from the examples of the SO(3) rigid
body and the heavy top, treated in the previous sections. These are the SO(4) rigid
body and the spring pendulum.

6.1. The SO(4) rigid body. For a complete study of the rigid body motion on
SO(4) we refer to [BCRT12] and references therein. We use the generic elements

X =


0 x1 x2 x3

−x1 0 x4 −x5

−x2 −x4 0 x6

−x3 x5 −x6 0,


or X = (X1, X2) ∈ R6.

In terms of vectors (X1, X2) ∈ R6 and (X ′1, X
′
2) ∈ R6 we have

[(X1, X2), (X ′1, X
′
2)] = (X1 ×X ′1 +X2 ×X ′2, X1 ×X ′2 +X2 ×X ′1) .

The coadjoint action is the same, under the trace-pairing.
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The Casimir for SO(4) are given by

C1 = Tr(X2) =
∑
i

x2
i = ‖X1‖2 + ‖X2‖2 ,

C2 =
√

det(X) = x1x6 + x2x5 + x3x4 = X1 ·X2 .

The first Casimir is a 4-dimensional sphere and the second is the Pfaffian, or scalar
product between two vectors.

The momentum-velocity relation is Π = JΩ + ΩJ where J = diag(λ1, . . . , λ6) and
the Hamiltonian H(Π) = 1

2
(Π1 · Ω1 + Π2 · Ω2).

We thus have the following stochastic 4-dimensional rigid body equations

d(Π1,Π2) = (Π1 × Ω1 + Π2 × Ω2,Π1 × Ω2 + Π2 × Ω1) dt

+
∑
i

(
Π1 × σi1 + Π2 × σi2,Π1 × σi2 + Π2 × σi1

)
◦ dWi ,

(6.1)

which preserve the coadjoint orbit.

We now look at the selective decay term for the Casimir C2(Π) = Π1 · Π2. It
reads, upon using semi-simplicity,

SD = ad(Π2,Π1)ad(Π2,Π1)(Ω1,Ω2)

= (Π2 × (Π2 × Ω1 + Π1 × Ω2) + Π1 × (Π2 × Ω2 + Π1 × Ω1),

= (Π2 × Π2 × Ω1 + Π2 × Π1 × Ω2 + Π1 × Π2 × Ω2 + Π1 × Π1 × Ω1,

,Π2 × Π2 × Ω2 + Π2 × Π1 × Ω1 + Π1 × Π2 × Ω1 + Π1 × Π1 × Ω2) .

One can directly check that the first Casimir C1 is also preserved by this flow.

Proposition 6.1. This stochastic dissipative SO(4) free rigid body admits a random
attractor.

Proof. This is a direct application of the theory developed in Section 3. �

The invariant distribution will be centred around the minimal energy position, as-
sociated to the direction of the maximal moment of inertia. We will not numerically
investigate the random attractors for this system here. However, further theoreti-
cal studies are indeed possible, and especially the integrable case, with a particular
choice of the noise, would be interesting to discuss, elsewhere.

6.2. Spring pendulum. From the heavy top equation one can derive the spherical
pendulum by letting one of the components of the diagonal inertia tensor in body
coordinates tend to zero, e.g., I3 → 0. This follows, because the spherical pendulum
is infinitely thin and, hence, does not have any inertia for rotations around its axis.
We shall choose I = diag(I, I, ε) in the heavy top equations and then take the
limit ε → 0 so that the dynamics on Π3 vanishes. The similarity of this system
with the rigid body allows us to consider an extension of the spherical pendulum
which is called the spring pendulum [Lyn02]. To include the dynamics of the length
of the spring pendulum, we introduce a new variable R(t) ∈ R \ {0} and enforce
its dynamical evolution in the variational principle by adding P (Ṙ − v)dt where v
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denotes the velocity of the mass along the pendulum and P denotes its associated
momentum. The Lagrangian is then found to be

l(Ω,Γ, R, v) =
m

2
R2Ω · IΩ−mgRΓ · χ+

1

2
mv2 − k

2
(R− 1)2 , (6.2)

where χ represents the initial position of the pendulum which is taken to be (0, 0, 1)
in accordance with our choice of inertia tensor. In (6.2), we denote the spring
constant by k and the mass of the pendulum bob by m.

We shall assume a general linear stochastic potential of the form,

Φ(Π,Γ, R, P ) := σ ·Π + η · Γ + αR + βP , (6.3)

for constant vectors σ,η, and constant scalars α, β. Consequently, the stochastic
spring pendulum equations are given by

dΠ = Π×Ωdt+mgRΓ× χdt+ Π× σi ◦ dW i
t + Γ× ηi ◦ dW i

t ,

dΓ = Γ×Ωdt+ Γ× σi ◦ dW i
t ,

dR =
P

m|χ|2
dt+ βdWt ,

dP = −mgΓ · χdt− k(R− 1)|χ|2dt+
1

mR3
Π · I−1Π− αdWt .

(6.4)

The analysis above is valid, provided ε > 0 in the inertia tensor. In the limit ε→ 0,
we may set Ω3 = 0 and thereby recover the stochastic elastic spherical pendulum
equations.

The equation set in (6.4) consists of two parts: the stochastic heavy top equations,
coupled to a pair of stochastic canonical Hamilton equations for the (R,P ) variables.
The coupling between the two subsets of equations occurs through the dependence
on R together with Ω and Γ in the Lagrangian (6.2).

The Fokker-Planck equation is then easily derived and reads

d

dt
P = {H,P}HT + {H,P}can +

1

2
{Φ, {Φ,P}HT}HT

+ {Φ, {Φ,P}HT}can +
1

2
{Φ, {Φ,P}can}can ,

(6.5)

where { · , · }can is the canonical Poisson bracket with respect to the (R,P ) vari-
ables. The coupling between the elastic and pendulum motions is too complicated
to extract any information from the Fokker-Planck equation. Indeed, inspection of
the motion on (R,P ) shows that the advection equation for (R,P ) depends on the
other variables. This inextricable complex dependence precludes finding the limiting
distribution explicitly, despite the simple Laplacian form of the diffusion operator.

As pointed out by [Lyn02], the deterministic elastic spherical pendulum system is
a toy model for the lowest modes of atmosphere dynamics. For this application, the
motion of the spring oscillations encoded in R is considerably faster than the pendu-
lum motion and smaller in amplitude. Averaging the deterministic Lagrangian over
the relatively rapid oscillations of the spring yields a nonlinear resonance between
the modes of a type which also appears in the atmosphere. The noise can be included
in either of the two types of dynamics and each will influence the other through the
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nonlinear coupling. Also, for small oscillations around the equilibrium, the deter-
ministic nonlinear coupling produces star shaped orbits [HL02, Lyn02], which can
be perturbed or even entirely destroyed by the introduction of the noise, depending
on its amplitude.
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