P1 de Álgebra Linear I -2005.2

8 de setembro de 2005.

1)

(a) Considere os planos de equações cartesianas

$$\alpha$$
: $x - 2y + z = 1$,
 β : $2x - y + 2z = 2$,
 γ : $x - 5y + z = k$.

Determine k para que os planos se interceptem ao longo de uma reta.

(b) Considere os planos π e ρ de equações cartesianas

$$\pi$$
: $2x - y + z = 1$, ρ : $x + 2y + z = 2$.

Determine a equação cartesiana do plano τ que contém o ponto (1,1,1) tal que a interseção dos planos π , ρ e τ seja uma reta r.

- (c) Considere os planos π e ρ do item anterior. Estude se existe um plano ν tal que a interseção dos planos π , ρ e ν seja o ponto (1,1,0). Em caso afirmativo determine a equação cartesiana de ν . Em caso negativo, justifique cuidadosamente sua resposta.
 - 2) Considere as retas de equações paramétricas

$$r_1: (t, t+1, 2t-1), t \in \mathbb{R}, \quad e \quad r_2: (2t+1, t, t), t \in \mathbb{R}.$$

- (a) Verifique se as retas se interceptam. Em caso afirmativo determine o ponto de interseção, e em caso negativo a distância entre as duas retas.
- (b) Escreva a equação cartesiana do plano π que contém a reta r_2 e é paralelo à reta r_1 .
- (c) Determine a distância do plano π do item anterior ao ponto P = (-1, 3, 0).

(d) Considere os pontos

$$A = (0, 1, -1)$$
 e $B = (1, 0, 0)$.

Determine um ponto C pertencente à reta r_2 que seja equidistante dos pontos A e B.

(e) Considere agora os planos

$$\alpha: x - y + z = 0$$
, e $\beta: 2x + y - 4z = 0$.

Encontre o plano ν perpendicular a α e β e que passa pelo ponto (4,0,-2).

3) Considere os pontos de \mathbb{R}^3

$$P = (1, -2, 3), \quad Q = (4, 3, -1), \quad R = (2, 2, 1), \quad S = (5, 7, -3).$$

- (a) Mostre que o quadrilátero Σ tendo como vértices os ponts $P,\,Q,\,R$ e S é um paralelogramo.
- (b) Determine a área do paralelogramo Σ .
- (c) Determine a equação cartesiana do plano π que contém o paralelogramo $\Sigma.$