P3 de Álgebra Linear I – 2002.2

Data: 23 de novembro de 2002 Horário: 10:00 - 11:50

Nome:	Matrícula:	
Assinatura:	Turma:	

Questão	Valor	Nota	Revis.
1	2.5		
2a	0.5		
2b	0.5		
3a	2.0		
3b	1.5		
4a	0.5		
4b	0.5		
5a	0.5		
5b	0.5		
5c	0.5		
5d	1.0		
Total	10.5		

Instruções:

- Não é permitido usar calculadora. Mantenha o celular desligado.
- É proibido desgrampear a prova. Prova com folhas faltando ou rasuradas terá nota zero.
- Nas questões 2, 3 e 4 justifique cuidadosamente todas as respostas de forma completa, ordenada e coerente. Escreva de forma clara e legível.
- Faça a prova na sua turma.

Marque no quadro as respostas da primeira questão. Não é necessário justificar esta questão.

ATENÇÃO: resposta errada vale ponto negativo!. A questão pode ter nota negativa!

Para uso exclusivo do professor	****	****
Certas:	$\times 0.3$	
Erradas:	\times -0.2	
****	Total	

1) Decida se cada afirmação a seguir é verdadeira ou falsa e marque **com caneta** sua resposta no quadro abaixo. **Atenção:** responda **todos** os itens, use " $\mathbf{N} =$ não sei" caso você não saiba a resposta. Cada resposta certa vale 0.3, cada resposta errada vale -0.2, cada resposta \mathbf{N} vale 0. Respostas confusas e/ou rasuradas valerão -0.2.

Itens	V	\mathbf{F}	N
1.a			
1.b			
1.c			
1.d			
1.e			
1.f			
1.g			
1.h			
1.i			

- $\mathbf{1.a}$) Seja A uma matriz simétrica inversível. Então sua inversa também é simétrica.
 - 1.b) O produto de duas matrizes simétricas é uma matriz simétrica.
 - 1.c) O produto de duas matrizes ortogonais é uma matriz ortogonal.
 - 1.d) A matriz

$$A = \begin{pmatrix} 77777 & 88888 & 99999 \\ 88888 & 77777 & 55555 \\ 99999 & 55555 & 77777 \end{pmatrix}$$

é diagonalizável.

1.e) A matriz

$$A = \begin{pmatrix} 111 & 222 & 333 \\ 222 & 444 & 666 \\ 333 & 666 & 999 \end{pmatrix}$$

tem autovalores 0 (de multiplicidade 2) e 111 + 444 + 999 = 1554.

- **1.f)** Seja R uma rotação de \mathbb{R}^3 de ângulo α e eixo de rotação a reta r que contém a origem. Então, para todo vetor não nulo u de \mathbb{R}^3 , se verifica que o ângulo entre u e R(u) é α .
- **1.g**) Seja A uma matriz simétrica 3×3 e os vetores u = (1, 1, 1) e v = (1, -2, 1) autovetores de A cujos autovalores são 1763 e 23578. Então (1, 0, -1) é um autovetor de A.
 - **1.h)** Seja A uma matriz simétrica 3×3 cujo determinante é 30. Suponha

que 3 e 5 são autovalores de A. Então o traço de A é 10.

- **1.i)** Suponha que A é uma matriz 3×3 tal que A^2 é simétrica. Então A é simétrica.
 - 2) Considere a matriz

$$A = \left(\begin{array}{cc} a+b & b-a \\ a-b & b+a \end{array}\right).$$

- (2.a) Estude que condições devem satisfazer os números reais a e b para que a matriz seja ortogonal.
- (2.b) Veja se é possível escolher a e b para que a matriz A represente um espelhamento.
 - 3) Estude que tipo de transformações representam as matrizes $A \in C$

$$A = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} & \frac{-1}{\sqrt{3}} \\ 0 & \frac{-2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix} \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{-\sqrt{2}}{2} & 0 \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{6}} & \frac{-2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{pmatrix}.$$

$$C = \frac{1}{9} \begin{pmatrix} 8 & 2 & 2 \\ 2 & 5 & -4 \\ 2 & -4 & 5 \end{pmatrix}.$$

- (3.a) No casos envolvendo projeções determine a reta ou plano de projeção, nos casos envolvendo espelhamentos determine o plano ou reta de espelhamento, e nos casos envolvendo rotações determine o ângulo e o eixo de rotação.
- (3.b) Determine quais das matrizes $A \in C$ são diagonalizáveis. Nos casos afirmativos determine a forma diagonal.
- 4) Considere as bases $\beta = \{(7)\}$ e $\gamma = \{(3)\}$ de \mathbb{R} . Considere também a base canônica $\mathcal{E} = \{(1)\}$ de \mathbb{R} . Determine:

- (4.a) As matrizes de mudança de base da base β à base canônica e da base γ à base canônica.
- (4.b) A matriz de mudança de base da base β à base γ .
 - 5) Considere a matriz

$$A = \left(\begin{array}{ccc} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{array}\right).$$

Sabendo que 3 é um autovalor de A:

- (5.a) Determine todos os autovalores de A.
- (5.b) Determine, se possível, uma base ortonormal de autovetores de A.
- (5.c) Encontre, se possível, uma forma diagonal D de A.
- (5.d) Determine explicitamente matrizes P e P^{-1} tais que $A = PDP^{-1}$, onde D é diagonal.