Duração: 1 hora 50 minutos

G1 de Álgebra Linear I-2006.2

Data: 6 de setembro de 2006

Nome:	Matrícula:		
Assinatura:	Turma:		

Questão	Valor	Nota	Revis.
1a	1.0		
1b	1.0		
1c	1.0		
2a	1.0		
2b	1.0		
2c	1.0		
2d	1.0		
3a	1.0		
3b	1.0		
3c	1.0		
Total	10.0		

Instruções

- Não é permitido usar calculadora. Mantenha o celular desligado.
- É proibido desgrampear o caderno de prova.
- <u>Verifique</u>, <u>revise</u> e <u>confira</u> cuidadosamente suas respostas.
- Respostas a caneta. Escreva de forma clara e legível.
- Justifique de forma clara, ordenada e completa suas respostas. Respostas sem justificativas não serão consideradas.

a) Considere a reta s de equação paramétrica

$$s = (t, 1 - t, 1 + 2t), \quad t \in \mathbb{R},$$

e os planos π_1, π_2 e π_3 cujas equações cartesianas são

$$\pi_1$$
: $x + 2y + az = b$, π_2 : $x - 2y + cz = d$, π_3 : $x + y + fz = g$.

Determine $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{f}$ e \mathbf{g} para que a interseção dos planos π_1, π_2 e π_3 seja a reta s.

b) Considere os planos ρ_1, ρ_2 e ρ_3 cujas equações cartesianas são

$$\rho_1$$
: $x + y - z = 1$, ρ_2 : $x + 3y + z = 1$, ρ_3 : $x + \alpha y + 3z = \gamma$.

Determine, explicitamente, α e γ para que a interseção dos planos ρ_1, ρ_2 e ρ_3 seja uma reta r.

c) Determine uma equação paramétrica da reta r do item anterior.

Resposta:

2) Considere as retas

$$r_1 = (1+t, 2-t, 1+t), \quad t \in \mathbb{R}, \qquad r_2 = (1+2t, 2-t, 1+2t), \quad t \in \mathbb{R}.$$

- a) Determine pontos $B \in r_1$ e $C \in r_2$ tais que:
 - os pontos A = (1, 2, 1), $B \in C$ sejam os vértices de um paralelogramo \mathfrak{P} ,
 - \bullet o lado AB de ${\mathfrak P}$ tenha comprimento $\sqrt{3},$ e
 - a área de \mathfrak{P} seja $2\sqrt{2}$.
- **b)** Determine o quarto vértice D do paralelogramo \mathfrak{P} do item (a).
- c) Determine a equação cartesiana do plano π que contém o paralelogramo \mathfrak{P} .
- d) Considere a reta r_3

$$r_3 = (1+t, 2, 1), \quad t \in \mathbb{R}.$$

Determine um ponto E da reta r_3 tal que os pontos A, B, C, D e E sejam os vértices de um paralelepípedo \mathfrak{V} de volume 2.

Resposta:

3) Considere a reta

$$r = (2t, 2-t, 1+t), t \in \mathbb{R},$$

e o ponto

$$Q = (1, 0, 1).$$

- (a) Escreva a reta r como a interseção de dois planos π e ρ (escritos na forma cartesiana) tais que π é paralelo ao eixo \mathbb{X} (isto é, o vetor normal do plano π é ortogonal ao vetor \mathbf{i}) e ρ é paralelo ao eixo \mathbb{Z} (isto é, o vetor normal do plano ρ é ortogonal ao vetor \mathbf{k}).
- (b) Determine as equações cartesianas e paramétricas do plano τ que contém a reta r e o ponto Q.
- (c) Determine o ponto M da reta r mais próximo do ponto Q. Calcule a distância do ponto Q à reta r.

Resposta: