[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[obm-l] Ol�mpiada. N�vel 2. Fase 3.



Solicito, por gentileza, corre��o da resolu��o (ou tentativa de resolu��o) da quest�o que segue.

 

PROBLEMA 6

Em um torneio de t�nis de mesa (no qual nenhum jogo termina empatado), cada um dos n participantes jogou uma �nica vez contra cada um dos outros. Sabe-se que, para todo k > 2, n�o existem k jogadores J1, J2, ?, Jk tais que J1 ganhou de J2, J2 ganhou de J3, J3 ganhou de J4, ?, Jk ? 1 ganhou de Jk, Jk ganhou de J1. Prove que existe um jogador que ganhou de todos os outros e existe um jogador que perdeu de todos os outros.

 

TENTATIVA DE RESOLU��O

 

            As hip�teses:

1)     N�o h� empate.

2)     Cada jogador joga uma e s� uma vez com cada um dos outros.

3)     Sabe-se que, para todo k > 2, n�o existem k jogadores J1, J2, ?, Jk tais que J1 ganhou de J2, J2 ganhou de J3, J3 ganhou de J4, ?, Jk ? 1 ganhou de Jk, Jk ganhou de J1.

A tese: Existe um jogador que ganhou de todos e um que perdeu de todos.

            Bem, com tr�s jogadores: J1, J2, J3. � sabido que a �nica hip�tese que n�o existe �: J1>J2, J2>J3 e J3> J1. Logo, s� pode existir, sem perda de generalidade: J1>J2, J2>J3 e J3< J1, ou seja, J1>J2>J3. Cabe explicar que o s�mbolo ?>? utilizado significa, por exemplo: ?Jogador 1 ganhou do Jogador 2?.

            Com quatro jogadores, n�o temos: J1>J2, J2>J3, J3> J4 e J4>J1. Assim, podemos trocar um ou dois desses sinais de > para <.  Ent�o, temos: (>, >, >, <) ou (>, >, <, <). Assim, no primeiro caso, J4 ser� o que perdeu de todos; no segundo, ser� J3; e em ambos, J1 ganhou de todos.

Com n jogadores: � sabido que n�o temos: (>,>,>, ... , >). Entre esses par�ntesis, h� n ?>?. Com n par, podemos trocar ?>? para ?<? k vezes, k de n a n/2, se n � par (ordem decrescente). Assim, em todos esses casos J1 ser� o que ganhou de todos e Jk ser� o que perdeu de todos. Se n � �mpar, k varia (ordem decrescente tamb�m) de n at� o primeiro inteiro maior que n/2.

 

 

 

������������������������Instru��es para entrar na lista, sair da lista e usar a lista em http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html ������������������������