[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [obm-l] Duvida!!!



Oi, Nicolau:

Um duvida conceitual: Eh correto se afirmar que o corpo dos complexos eh
completo apesar de nao ser ordenado (por exemplo, no sentido de que, em C,
toda sequencia de Cauchy eh convergente)?

[]'s
Claudio.


on 29.10.03 08:46, Nicolau C. Saldanha at nicolau@sucuri.mat.puc-rio.br
wrote:

> 
> On Tue, Oct 28, 2003 at 11:49:21PM -0200, Felipe Pina wrote:
> 
> Oi Felipe, a sua explica��o foi muito boa mas achei esta parte um pouco
> confusa:
> 
>> A completude de R significa que n�o existe um n�mero 'fora' de R que
>> pode ser arbitrariamente aproximado por uma seq��ncia de numeros reais.
>> Por exemplo, o conjunto dos n�meros racionais nao � completo pois
>> existem seq��cias de n�meros racionais que 'convergem' para n�meros que
>> n�o s�o racionais (por exemplo, para ra�z de 2).
> 
> Acho que o que voc� quer dizer � mais ou menos o seguinte.
> 
> Seja K um corpo ordenado. Sempre existem corpos ordenados maiores,
> i.e., sempre existem corpos ordenados K1 tais que existe um homomorfismo
> crescente e injetor K -> K1. Por exemplo, se K for Q (os racionais)
> podemos tomar K1 = Q(sqrt(2)) = {a + b sqrt(2); a, b in Q}
> (onde uso 'in' onde deveria aparecer o s�mbolo de pertence).
> 
> Uma constru��o que funciona sempre � tomar K1 = K(X), o corpo das fun��es
> racionais com coeficientes em K. A ordem � definida assim: um polin�mio
> p in K[X] � maior do que 0 se o seu coeficiente de mais alto grau for positivo
> (no sentido de K); a partir da� � autom�tico como definir para
> fun��es racionais. Nesta constru��o X � maior do que qualquer elemento de K
> e podemos dizer que X � infinitamente grande.
> 
> O corpo Q est� naturalmente inclu�do dentro de qq corpo ordenado.
> Dizemos que K � arquimediano se Q for ilimitado em K.
> Ou seja, K � n�o-arquimediano se existir x in K com x > a para todo a in Q.
> 
> A completude de R � equivalente a dizer que R � arquimediano mas
> que se R -> R1 � uma inclus�o n�o trivial ent�o R1 � n�o-arquimediano.
> Al�m disso, todo corpo arquimediano � isomorfo a um subcorpo de R.
> 
> []s, N.

=========================================================================
Instru��es para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================