[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: Problemas



Caros,
Sauda��es !

Penso que um problema � f�cil se, com base em um fato bem estabelecido, 
mesmo que pouco conhecido, ele se torna uma consequencia deste resultado. 
Neste sentido os problemas 2) e 3) s�o faceis porem de resolu��o n�o 
imediata pelas f�rmulas conhecidas ...




>From: Eduardo Wagner <wagner@impa.br>
>Reply-To: obm-rj@mat.puc-rio.br
>To: obm-rj@mat.puc-rio.br
>Subject: Re: Problemas
>Date: Thu, 10 Jun 1999 23:42:12 -0300
>
> >Sauda��es !
> >
> >Tr�s Problemas - f�ceis, por�m - Ol�mpicos:
> >
> >
> >1 ) Escrevendo a sucess�o dos n�meros naturais de 1 a 10^n quantos
> >"algarismos" escrevemos ?
> >2 ) Prove que em qualquer triangulo o "raio" do circulo circunscrito n�o 
>�
> >menor que o "diametro" do circulo inscrito.
> >3)  Seja ABC um triangulo. Do v�rtice A tra�a-se um segmento AD ("D" est� 
>em
> >BC)tal que BD=n*DC; do V�rtice B tra�a-se um segmento BE ( "E" est� em
> >AC)tal que CE = n*EA e, finalmente, do V�rtice C tra�a-se um segmento CF 
>(
> >"F" est� em BC) tal que CF = n*FB. Ap�s esta constru��o surge um 
>tri�ngulo
> >na regi�o central  que n�o tem ponto em comum com o tri�ngulo ABC. Qual a
> >�rea deste tri�ngulo ( em fun��o de "n" ) ? A �rea do Tri�ngulo ABC � 1.
> >
>
>Caros amigos: como a solucao de 1) ja apareceu, vamos comentar as
>solucoes de 2) e 3).
>
>2) Nao eh um problema facil. Existem diversas maneiras de chegar a
>esse interessante resultado, mas sao todas bastante trabalhosas.
>Para dar logo um "tiro de canhao", a distancia entre o incentro e o
>circuncentro de um triangulo eh igual a "sqrt(R^2 - 2Rr)", encontrada
>pela primeira vez por Euler. A partir dai, fica claro que
>R^2 - 2Rr >= 0 e que R >= 2r.
>
>3) Neste problema eh preciso trabalhar. Primeiro, devemos concluir que
>a area de (ABD) eh n/(n+1) e em seguida verificar que as areas de
>(ABD), (BCE) e (CAF) sao iguais.
>Seja MNP o triangulo central: M = AD X CF, N = AD X BE e P = BE X CF.
>Usando, por exemplo o teorema de Menelaus, calculamos a razao
>AN/AD = (n + 1)/(n^2 + n + 1)  que eh igual a AP/AE e CM/CF.
>o proximo passo eh concluir que as areas dos triangulos ANB, BPC e CMA
>eh igual a n/(n^2 + n + 1). Dai, subtraindo essas areas do triangulo
>ABC, chegamos que a area do triangulo MNP eh (n^2 - 2n + 1)/(n^2 + n + 1).
>
>
>
>
>
>
>
>
>
>


______________________________________________________
Get Your Private, Free Email at http://www.hotmail.com