[
Date Prev
][
Date Next
][
Thread Prev
][
Thread Next
][
Date Index
][
Thread Index
]
Re: [obm-l] Racionalizar
To
:
obm-l@xxxxxxxxxxxxxx
Subject
: Re: [obm-l] Racionalizar
From
: "Henrique Rennó" <
henrique.renno@xxxxxxxxx
>
Date
: Thu, 14 Jun 2007 17:10:51 -0300
DKIM-Signature
: a=rsa-sha1; c=relaxed/relaxed; d=gmail.com; s=beta; h=domainkey-signature:received:received:message-id:date:from:to:subject:in-reply-to:mime-version:content-type:references; b=KOdaMiWlUP7M9XlonR202h3LNjlyJGLDc3iyDh7O/W4uCQ11l3pfylly7ohpspfBtGWGBuGcn3fCIG1MKwIFO1jEROfqeSNU5qITXxf0E8oHBN8heCPya/EkPjQn5jE9GAAwBONVsTVTEol/5ZtifvUJ0hoyBXeiSjXbSZT9Ciw=
DomainKey-Signature
: a=rsa-sha1; c=nofws; d=gmail.com; s=beta; h=received:message-id:date:from:to:subject:in-reply-to:mime-version:content-type:references; b=ZUZPkQ0LAZ5gsIDw2B1kwXAEIDt78SIoV6/cRXG9RJU8RES3QnwYpgPTUq5gIDM1hNxixs+fhmYGNCf5nOobhx3+BFZciX+K7dZkhZoqjTHPhlxXS8oELSNua00q0hkoWygfMXMTGIfEZKyLnL9Ju/U6MtKCB08gU1CZ71flx1U=
In-Reply-To
: <
002901c7aeb2$32104fd0$0201a8c0@CASA
>
References
: <
002901c7aeb2$32104fd0$0201a8c0@CASA
>
Reply-To
:
obm-l@xxxxxxxxxxxxxx
Sender
:
owner-obm-l@xxxxxxxxxxxxxx
Olá Taciano!
Considerando o binômio (a+b)^3 = a^3 + 3.a^2.b + 3.a.b^2 + b^3, temos:
a^3 + b^3 = (a+b)^3 - 3ab(a+b)
Colocando (a+b) em evidência
a^3 + b^3 = (a+b)^3 - 3ab(a+b) = (a+b)[(a+b)^2 - 3ab]
Desenvolvendo o produto notável (a+b)^2 temos a^2 + 2ab + b^2, ou seja,
a^3 + b^3 = (a+b)^3 - 3ab(a+b) = (a+b)[(a+b)^2 - 3ab] = (a+b)(a^2 + 2ab + b^2 - 3ab) = (a+b)(a^2 - ab + b^2)
Se considerarmos a = 2 e b = rz3(2), onde rz3 significa "raÃz cúbica", multiplicando numerador e denominador por (a^2 - ab + b^2), o denominador ficará a^3 + b^3, ou seja, 8 + 2 = 10.
On 6/14/07,
Taciano Scheidt Zimmermann
<
tacianoz@gmail.com
> wrote:
Como se racionaliza essa expressão?
2
2 + ³
√
2
- - -
Taciano Scheidt Zimmermann
tacianoz@gmail.com
--
Henrique
Follow-Ups
:
[obm-l] ajuda (polinômio)
From:
cleber vieira
[obm-l] ajuda (limites)
From:
cleber vieira
References
:
[obm-l] Racionalizar
From:
Taciano Scheidt Zimmermann
Prev by Date:
Re: [obm-l] Racionalizar
Next by Date:
[obm-l] ajuda (polinômio)
Prev by thread:
Re: [obm-l] Racionalizar
Next by thread:
[obm-l] ajuda (polinômio)
Index(es):
Date
Thread