De: | owner-obm-l@mat.puc-rio.br |
Para: | obm-l@mat.puc-rio.br |
Cópia: |
Data: | Tue, 8 May 2007 12:54:29 -0700 (PDT) |
Assunto: | [obm-l] funcao continua |
Basta usar o TVI com a função g(x) = f(x) - x.
Mais interessante é provar que se f:[0,1]^2 -> [0,1]^2 é contínua, então existe (a,b) em [0,1]^2 tal que f(a,b) = (a,b). (no caso, [0,1]^2 é o produto cartesiano [0,1]x[0,1], ou seja, o quadrado unitário).
Isso pode ser generalizado pra f:B -> B, onde B é qualquer conjunto homeomorfo à bola unitária do R^n. Esse é o teorema do ponto fixo de Brouwer.
Tem também um outro teorema de ponto fixo não muito difícil de provar, que é o seguinte: Se E é um subconjunto de R, k um número no intervalo (0,1) e f:E -> E tal que |f(x) - f(y)| <= k*|x - y| para quaisquer x e y em E, então existe um único c em E tal que f(c) = c. Além disso, dado qualquer x_0 em E, se formarmos a sequência x_1 = f(x_0), x_2 = f(x_1), ..., então x_n -> c.
Esse também tem generalização: ao invés de um subconjunto de R, E pode ser qualquer espaço métrico completo. A demonstração é essencialmente a mesma (via sequências da Cauchy), mas as consequências são impressionantes (por exemplo, o teorema da aplicação inversa e a existência e unicidade da solução de uma EDO).
[]s,
Claudio.