[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [obm-l] Limite



Olá,
 
vamo fazer k/x = y, entao:
 
qdo x->inf, y->0
 
lim [cos(y)]^(k/y) = lim [(cos(y))^(1/y)]^k = { lim [cos(y)]^(1/y) }^k, quando y->0
 
agora, temos que calcular: lim [cos(y)]^(1/y), y->0
 
cos(y)^(1/y) = exp[ ln(cos(y))/y ]
 
assim, vamos calcular lim ln[cos(y)]/y, y->0
 
notemos que ln(cosy) <= y^2 para y<1 [pra provar, tome f(x) = ln(cosx) - x^2 e mostre que é sempre negativo..]
 
agora: 0 <= ln(cosy)/y <= y
assim, pelo teorema do sanduiche, ln(cosy)/y -> 0 quando y->0
logo: exp[ ln(cosy)/y ] -> 1, quando y->0 ... logo: cos(y)^(1/y) -> 1...
 
assim: lim x->inf [cos(k/x)]^x = 1^k = 1
 
PS: ja q ficou pequeno, vamos mostrar a desigualdade..
f(x) = ln(cosx) - x^2... f(-x) = ln(cos(-x)) - (-x)^2 = f(x) [funcao par]
f'(x) = 1/cosx * (-senx) - 2x = -tgx-2x = -[tgx + 2x]
para 0<x<1, temos que tgx>=0 e 2x>=0... logo f'(x) < 0
a funcao eh decrescente.. mas f(0) = 0 .. assim, no interno [-1, 1] a funcao é sempre negativa!
isto é: f(x) <= 0 ... ln(cosx) <= x^2, para |x|<1
 
abracos,
Salhab
 
----- Original Message -----
To: obm-l
Sent: Monday, March 26, 2007 12:27 PM
Subject: [obm-l] Limite

Calcule o limite:

lim [cos(k/x)]^x     x->infinito com k constante sem utilizar l'hospital ou série ou equivalência..... somente por limites fundamentais..
grato

Leonardo Borges Avelino