[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [obm-l] Recorrencias Lineares



Acho que entendi o que voce quis dizer,  que existem varias tecnicas
diferentes para resolver recorrencias, mas so com pratica vou
conseguir perceber qual � a melhor na situacao dada do problema.

Por exemplo, mesmo que eu tivesse uma recorrencia do tipo a_n =
a_(n-1) + n^2 , a_0=0     e seguisse a aparente "regra" de colocar um
polinomio de grau 2 nao iria dar, porque eu preciso de um polinomio de
grau3 para a_n.

Entao � isso, como voce disse nao tem algoritmo definido. Obrigado
pelo esclarecimento, Ronaldo.

On 2/23/07, Ronaldo Alonso <ronaldo.luiz.alonso@gmail.com> wrote:
> On 2/22/07, Rafael <rfa1989@gmail.com> wrote:
> >
> > Qual o metodo que voces usam para resolver recorrencias lineares
> > nao-homogeneas do tipo: a_n*x_n +...+a_0*x_0 = P(n)
> > sendo P(n) um polinomio em n.
> > Ex.: x_n - 5*x_(n-1) + 6*x_(n-2) = 5 + 3*n +2*n^2
> >
> > Li uma solucao de um problema parecido com esse (mas do mesmo formato
> > geral que eu descrevi acima) , onde o autor ao meu ver "chuta" que x_n
> > � da forma x_n = A*n^2 + B*n +C , e substitui nos x_n, x_(n-1), etc do
> > problema.
> > Depois usa identidade de polinomios para determinar A,B,C  e depois
> > soma essa solucao com a solucao do caso homogeneo (como se o segundo
> > membro fosse zero).
>
>
>    Vc deve j� ter notado que voc� est� diante de uma equa��o de diferen�as
> n�o
> homog�nea.  Da� a solu��o � x = x_h + x_p  onde x_h � a solu��o particular
> equa��o
> homog�nea.   No caso do exercicio  que vc resolveu n�o � dificil ver que a
> solu��o
> particular tem que ser da forma x_n = A*n^2 + B*n +C ,  porque se termos
> quadr�ticos
> aparecem do lado direito, ent�o para qualquer termo da forma x_(n-k)
> ter�amos
> x_(n-k) = A* (n-k)^2 + B*(n-k) + C que daria um polin�mio de grau 2.   E a
> soma
> de polin�mios de grau 2 tem sempre grau 2.
>
>    E se os termos do lado direito envolvessem senos, cossenos ou coisas do
> g�nero?
> Voc� olharia as opera��es que s�o executadas nos termos do lado direito.
> Como
> s� existem coeficientes constantes multiplicando x_(n-k), isso fica um pouco
> mais f�cil,  Note   ent�o que senos e cossenos
> do lado esquerdo, n�o podem aperecer elevados ao quadrado ou
> devem se reduzir a identidades  trigonom�tricas do lado esquerdo,
> *se* os termos do lado direto n�o estiverem elevados a pot�ncias.
>     Note tamb�m que a solu��o particular, de qualquer equa��o desta
> natureza,
> tem que considerar nuances deste tipo e ser� espec�fico para cada caso.
>
>  Havia um professor meu, da f�sica, que dizia o seguinte: N�o h� algoritmo
> fechado
> para resolver equa��es diferenciais, ganhar dinheiro e conquistar mulheres
> bonitas.
>     S� a intui��o e o "bom senso" conseguem resolv�-los, se eles, � claro,
> forem
> poss�veis :) :)
>
> []s
>
>
>
>
> Como � que eu vou saber que polinomio devo "chutar" para a forma x_n?
> > sera que � sempre um polinomio do mesmo grau que P(n)?
> > ou ha um metodo melhor,  para calcular isso?
> >
> > Obrigado.
> > --------------------------------------------------
> >                     Rafael
> >
> > =========================================================================
> > Instru��es para entrar na lista, sair da lista e usar a lista em
> > http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
> > =========================================================================
> >
>
>
>
> --
> Ronaldo Luiz Alonso
> --------------------------------------
> Computer Engeener
> LSI-TEC/USP - Brazil.
>


-- 
--------------------------------------------------
                     Rafael

=========================================================================
Instru��es para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================