[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[obm-l] Re: [obm-l] Re:[obm-l] Demonstração de Integral



Olá,
então: u^v = e^(v ln u)
derivando, temos:

derivada(u^v) = derivada(e^(v ln u)) = e^(v ln u) * (dv ln u + v du/u) 
[aplicando regra da cadeia algumas vezes]
então:
derivada(u^v) = u^v * (derivada(v) ln u + v/u * derivada(u) )

abraços,
Salhab

----- Original Message ----- 
From: "Henrique Rennó" <henrique.renno@gmail.com>
To: <obm-l@mat.puc-rio.br>
Sent: Thursday, February 09, 2006 8:03 PM
Subject: Re: [obm-l] Re:[obm-l] Demonstração de Integral


Olá Luiz!!!

Primeiramente, agradeço deveras pela resposta. Agora, gostaria de
pedir desculpas, pois cometi um erro. Na verdade a fórmula não é
integral(u^v) e sim derivada(u^v). É que no momento que escrevi a
mensagem estava estudando integrais.

Novamente, se possível, peço uma demonstração da igualdade:

derivada(u^v) = u^v.(v.du/u + dv.ln(u))

Novamente peço desculpas pelo erro.

Abraços

On 2/9/06, Luiz H. Barbosa <ricklista@bol.com.br> wrote:
>
> Bom, não entendi muito bem o que escreveu.Mas sempre utilizei ln para
> linearizar exponenciais na hora de integrar:
> Veja:
> Se Integral{[f(x)^g(x)]dx} = I ,
> Fazendo
> u = f(x)^g(x) -> I = Integral{udx} (i)
> Mas,
> u = f(x)^g(x),tirando ln nos 2 lados:
> ln(u) = g(x)*ln[f(x)] ,derivando:
> (1/u)*du = g(x)*{[1/f(x)]*f'(x)dx} + ln[f(x)]*{g'(x)dx},arrumando:
> udx = du*{1/{g(x)*{[1/f(x)]*f'(x)} + ln[f(x)]*{g'(x)}  ,substituindo em 
> (i):
>
> I = Integral{udx} = Integral{du*{1/{g(x)*{[1/f(x)]*f'(x)} +
> ln[f(x)]*{g'(x)}} =
> I = {1/{g(x)*{[1/f(x)]*f'(x)} + ln[f(x)]*{g'(x)}}*Integral{du} =
> I = {1/{g(x)*{[1/f(x)]*f'(x)} + ln[f(x)]*{g'(x)}}*u =
>
> I = {1/{g(x)*{[1/f(x)]*f'(x)} + ln[f(x)]*{g'(x)}}*{f(x)^g(x)}
>
> A unica coisa util disso tudo é sacar que vc pode aplicar ln nos dois 
> lados
> da igualdade!
>
> []'s
> Luiz H. Barbosa

--
Henrique

=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
========================================================================= 

=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================