[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: RES: RES: RES: [obm-l] Sigma-Algebra Borel



Realmente confirmar em sites da internet � um pouco complicado, especialmente sem conhecer o autor do artigo publicado.
 
O resultado:
 
"Em um espa�o m�trico separ�vel localmente compacto a sigma �lgebra gerada pelos conj. abertos e a gerada pelos conj. compactos coincidem"
 
me chamou bastante a aten��o. Especialmente me chamou a aten��o o fato do autor apresentar duas defini��es para a sigma �lgebra de Borel: (1) menor sigma algebra gerada pelos conjuntos abertos (defini��o comumente encontrada nos livros) e (2) a menor sigma-�lgebra gerada pelos compactos.
 
Continuo buscando maiores refer�ncias para tal assunto.
 
Talvez o livro:
 
A course on Borel Sets (Graduate Text Mathematics 180)
Autor: Srivastava, S. M.
Editora: Springer-Verlag
 
possa  apresenter maiores detalhes sobre o assunto.
 
[]'s
---------- In�cio da mensagem original -----------
De: owner-obm-l@mat.puc-rio.br
Para: obm-l@mat.puc-rio.br
Cc:
Data: Wed, 26 Jan 2005 17:34:52 -0300 (ART)
Assunto: Re: RES: RES: RES: [obm-l] Sigma-Algebra Borel
> Ser� que alguem ai pode confirmar isso ? Afinal sites na internet nao sao 100% confi�veis. O fato � muito interessante e pelo menos pra mim, nada natural. Na minha cabeca os compactos da topologia sao conjuntos mais peculiares do que abertos ou fechados.
> O fato afirmado �: vale a igualdade da sigma-algebra de borel gerada por abertos e a gerada por compactos em Esp. Top. Localmente Compactos e Separ�veis.
>
> Artur Costa Steiner wrote:
> Bom, a reta real e os espacos R^n em geral, assim como os complexos, sao separaveis e localmente compactos.
> Artur
>
> -----Mensagem original-----
> De: owner-obm-l@mat.puc-rio.br [mailto:owner-obm-l@mat.puc-rio.br]Em nome de alencar1980
> Enviada em: Wednesday, January 26, 2005 5:41 PM
> Para: obm-l
> Assunto: Re: RES: RES: [obm-l] Sigma-Algebra Borel
>
>
> Segundo o site: http://www.e-paranoids.com/b/bo/borel_algebra.html a igualdade da sigma-algebra de borel gerada por abertos e a gerada por compactos ocorrem quando "the topological space is a locally compact separable metric space".
> E n�o apenas na reta.
>
> O texto do site �:
>
> "In general topological spaces, even locally compact ones, the two structures are different. They are however identical whenever the topological space is a locally compact separable metric space."
>
> Estou tentando encontrar mais detalhes sobre o assunto mas at� agora n�o consegui nada.
>
> []'s
>
>
>
>
> ---------------------------------
> Yahoo! Acesso Gr�tis - Internet r�pida e gr�tis. Instale o discador do Yahoo! agora.