[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [obm-l] Mais construcoes [era: Quadrilatero Inscritivel]



Sauda,c~oes,

===
>Mas eh justamente esse o ponto. Para o caso particular que eu mencionei,
>existe uma infinidade de solucoes. Dai eu ter dito que o problema estah mal
>formulado, ou seja, que somente os angulos e as diagonais nao determinam
>univocamente o quadrilatero (pelo menos se os angulos forem retos e as
>diagonais iguais).
===
Vc criou uma situa��o onde os dados formam um sistema
indeterminado. Nesse caso uma s� diagonal basta. E se a
outra for de comprimento diferente o sistema � imposs�vel. Crie
uma situa��o onde os dados formam um sistema
determinado.

===
>Naturalmente, MR e NS se intersectam no quarto vertice, mas isso nao eh uma
>observacao esperta...
===
Chame esse ponto de P.
Seria o caso se o comprimento da diagonal formada fosse o dado
(seria muita sorte). Vc "resolveu" o problema seguindo uma
sugest�o do Polya (libere uma condi��o, como no caso bem
conhecido de inscrever o quadrado num tri�ngulo. A� vc faz uma obs.
esperta e obt�m a solu��o correta). P e C pertencem ao mesmo
arco capaz. De qual segmento? E AC � conhecido.
Sugest�o: trace o c�rculo que passa por ABD. E veja as interse��es
das retas MR e NS nesse c�rculo.

[]'s
Luis


>From: Claudio Buffara <claudio.buffara@terra.com.br>
>Reply-To: obm-l@mat.puc-rio.br
>To: <obm-l@mat.puc-rio.br>
>Subject: Re: [obm-l] Mais construcoes [era: Quadrilatero Inscritivel]
>Date: Sun, 05 Dec 2004 17:04:33 -0200
>
>on 01.12.04 17:35, Lu�s Lopes at qed_texte@hotmail.com wrote:
>
> > Sauda,c~oes,
> >
> > Pensei que tinham esquecido desse problema.
> >
> > Ok. Desenhe um quad. gen�rico e tire dele os dados do problema.
> > Casos particulares/extremos devem ser analisados � parte e/ou
> > algebricamente. Tendo resolvido o problema gen�rico seria
> > interessante (com ajuda de um programa tipo Cabri) ver como
> > a solu��o se comporta variando os dados. Inclusive para o caso
> > que vc imaginou. Mas o problema na sua formula��o geral est�
> > bem proposto.
> >
>Mas eh justamente esse o ponto. Para o caso particular que eu mencionei,
>existe uma infinidade de solucoes. Dai eu ter dito que o problema estah mal
>formulado, ou seja, que somente os angulos e as diagonais nao determinam
>univocamente o quadrilatero (pelo menos se os angulos forem retos e as
>diagonais iguais).
>
> > Sugest�o: seja MN=BD. Construa o segmento MN e o arco capaz
> > do �ngulo A (TODO ele). Marque um ponto A no que poderia ser
> > o ponto A e construa �ngulos AMR e ANS segundo os dados.
> > Fa�a uma observa��o esperta (estou falando mais do que o
> > Petersen falaria) e obtenha o ponto C (um lg � o comprimento da
> > diagonal n�o utilizado).
> >
>Naturalmente, MR e NS se intersectam no quarto vertice, mas isso nao eh uma
>observacao esperta...
>
>[]s,
>Claudio.
>


=========================================================================
Instru��es para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================