Hugo, isso foi uma questão de vestibular da UFC. Segundo consta no livro, é 126 mesmo.
Alexandre...
Não seria "Para cada inteiro positivo n > 6"?
qn tem 2^n divisores
q(n-6) tem 2^(n-6) divisores
logo dn/d(n-6) = 2^n/2^(n-6) = 2^(n-(n-6)) = 2^6 = 64.
[]'s
Hugo
Alexandre Bastos <alexandrebastos78@yahoo.com.br> wrote:
Moçada, se não for incômodo...
Para cada inteiro positivo n > 126, seja qn = p1p2...pn, onde p1,...pn são inteiros primos positivos e distintos. Se dn é o número de divisores positivos de qn, incluindo 1 e o próprio qn, encontre o valor de dn/d(n-6).
obs.: n, 1, 2, (n-6) são índices.
Yahoo! Mail agora ainda melhor: 100MB, anti-spam e antivírus grátis!
Yahoo! Mail agora ainda melhor: 100MB, anti-spam e antivírus grátis!