[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [obm-l] Espacial



Usando a id�ia dos eixos, as solu��es s�o dadas por

V(x) = (7/64)*pi*(16-x^2)*(sqrt(240+x^2)-4*x),

com -4 <= x < 4, que definitivamente n�o � uma fun��o constante.

O m�ximo dessa fun��o ocorre para algum x negativo... que fiquei com
pregui�a de determinar :)

kleinad@webcpd.com escreveu:
>
>==>"A altura (h) do tronco eh igual ao diametro da esfera (2*r = 2*4 = 8
>cm)"
>A raz�o entre as �reas das bases nos d� a  raz�o entre o quadrado dos raios
>das bases. Para mim, existem infinitas solu��es... Uma delas vem tomando o
>raio da base do tronco = raio R da esfera (o raio da base menor vale
>portanto R/4) e tomando a altura como sqrt(16 - 1) = sqrt(15). Assim, o
>volume ser� 7*pi*sqrt(15).
>
>As outras solu��es v�m pelo seguinte: imagine uma circunfer�ncia no eixo
>cartesiano. Tanto o tronco e a esfera s�o s�lidos de revolu��o, e por tanto
>uma solu��o no plano para o trap�zio e a circunfer�ncia ser� obviamente
>solu��o espacial ao fazermos a revolu��o.
>
>A equa��o da circunfer�ncia � x^2 + y^2 = 16.
>
>Escolha x_0 arbitr�rio. Na circunfer�ncia, teremos o ponto y_0 = sqrt(16 -
>x_0^2), que corresponder� ao raio da base maior do tronco. Depois, basta
>calcular a interse��o da reta y = y_0/4 com a circunfer�ncia e determinar o
>x_1 correspondente � interse��o. A altura do nosso tronco ser�, logo, x_1 -
>x_0.
>
>Assim, outra solu��o � Raio maior da base do tronco = sqrt(15) (raio menor =
>sqrt(15)/4), altura = sqrt(241)/4. -->> Volume = 105*pi*sqrt(241)/64.
>
>Repare que o volume do tronco, sendo R o raio maior, r o menor, e h a
>altura, � V = pi*h*(R^2+R*r+r^2)/3
>
>[]s,
>Daniel
>
>Faelccmm@aol.com escreveu:
>>
>>Ola,
>>
>>
>>V[tronco de cone] = pi*(h/3)*(r_2^2 + r_1^2 + r_1*r_2) (I)
>>
>>A altura (h) do tronco eh igual ao diametro da esfera (2*r = 2*4 = 8 cm)
>>
>>(... a razao entre as areas das bases do tronco eh igual a 16 ...)
>>
>>b1 = base menor do tronco
>>b2 = base maior do tronco
>>
>>b_2 / b_1 = 16
>>
>>A razao entre os raios da base maior e menor (r2 e r1 respectivamente) eh
>>igual aa raiz quadrada da razao entre as areas das bases !
>>
>>sqrt(b_2 / b_1) = sqrt(16) = r2 / r1
>>r2/ r1 = 4, logo r2 = 4*r1
>>
>>Voltando em (I):
>>
>>V[tronco de cone] = pi*(8/3)*((16*r1^2 + r_1^2 + r_1*(4*r1)) (I)
>>V[tronco de cone] = pi*56*r1^2 (I)
>>
>>Agora so falta-nos descobrir quanto vale r1^2 !
>>
>>
>>
>>Em uma mensagem de 17/7/2004 23:11:34 Hora padr�o leste da Am. Sul,
>>danielregufe@hotmail.com escreveu:
>>
>>
>>>
>>> Ola amigos da lista ...  matem essa pra mim ...
>>>
>>> Uma esfera de 4 cm de raio circunscreve um tronco de cone de revolu��o.
>>> Sabendo-se que a raz�o entre as �reas das bases do tronco � igual a 16, o
>>> seu volume � : ...
>>>
>>> []�s
>>> Regufe
>>>
>>>
>>
>>
>>
>

=========================================================================
Instru��es para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================