[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[obm-l] Re: [obm-l] mais um de teoria dos n�meros



2^3 + 1 = 9 e 3|9
2^9 + 1 = 513 e 9|513
...
suponha que 3^k|(2^(3^k) + 1)
2^(3^(k+1)) + 1 = 2^[3.(3^k)] + 1 = [2^(3^k)]^3 + 1

por hip�tese, 2^(3^k) = s*3^k - 1 para algum s inteiro.
substituindo
2^(3^(k+1)) + 1 = [s*3^k - 1]^3 + 1 = (3^3k)s^3 - 3.(3^2k)s^2 + 3s(3^k)
e obviamente 3^(k+1) divide isso...

segue por indu��o que se t = 3^n, t|(2^t + 1)


[ ]'s

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

Ol�.

Andei dando uma estudadinha em teoria dos n�meros pela internet, e tenho
feito alguns probleminhas simples, do estilo: "encontre todos os inteiros
a!=3 tais que (a-3)|(a^3-3)".
Agora me apareceu um problema um tanto mais complicado... diz assim: "Mostre
que existem infinitos naturais n tais que 2^n+1 � divi�svel por n". N�o sei
o
que fazer com essa pot�ncia! alguam sugest�o?

abra�o

=========================================================================
Instru��es para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================