[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[obm-l] Re: [obm-l] [u] Álgebra



> O que podemos dizer sobre a reducibilidade de x^p - x - a sobre Q, onde p
é
> primo e a é inteiro e primo com p?

Basta usar o seguinte critério de teste de irredutibilidade de polinômios:

se f = g.h com g e h não constantes, então

seja f' = f mod p
f' = g' h', onde g' = g mod p e h' mod p.
ou seja, se mostrarmos que para algum p primo, f mod p é irredutível, então
f é irredutível sobre Q.

[ ]'s

=========================================================================
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=========================================================================