[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [obm-l] curvas elipticas e formas modulares



Ola Fernanda e demais
colegas desta lista,

E isso mesmo ! E a prova da conjectura de Tanyiama-Shimura e o nucleo do 
trabalho do Wiles : seo ultimo Teorema de Fermat fosse falso entao haverima 
curvas elipticas que nao seriam modulares, que foi o que o Wiles provou.

Seja Y^2=f(x) uma curva eliptica ( o nome "curva eliptica" deriva da funcao 
que aparece quanto se pretende retificar a elipse, no problema de Pedrayes 
), a todo N natural se associal o conjunto de inteiros modulo N que 
satisfazem a curva. Esse conjunto e chamado conjunto M.

A toda forma modular, se associa, igualmente, um conjunto de simetrias. Seja 
S esse conjunto. O que Wiles provou, a grosso modo e que o conjunto M e 
igual o conjunto S, isto e, a todo connunto de solucoes modulo N de uma 
curva eliptica esta associado um e somente um conjunto de simetrias de uma 
forma modular.

Se o teorema de fermat fosse falso, haveria uma curva eliptica que nao seria 
modular, o que e um absurdo.

Parece que ha muito poucas pessoas no Brasil que conhecem a fundo as formas 
modulares ... O Luiz Manoel Silva de Figueiredo, Ph em Matematica por 
Cambridge (1996) e um Prof-Pesquisador da UFF que forma um grupo que estuda 
as formas modulares e, em particular, a conjectura do Serre. O Luizinho foi 
orientado pelo Richard Taylor, que foi o cara que ajudou o Wiles a corrigir 
o erro da primeira demonstracao, aquela apresentada no Instituto Isaac 
Newton.

O trabalho desse cara, o Luiz, e sobre a conjectura de Serre e 
representacoes de Galois, e uma continuacao da tese de doutorado dele. 
Escreve pra ele. ( talvez eu peca pra ele fazer uma exposicao aqui na lista 
)E um cara manero, sem frescuras ou beicinhos.

Um abraco
Paulo Santa Rita
2,1836,111102




>From: "Fernanda Medeiros" <femedeiros2001@hotmail.com>
>Reply-To: obm-l@mat.puc-rio.br
>To: obm-l@mat.puc-rio.br
>Subject: Re: [obm-l] curvas elipticas e formas modulares
>Date: Mon, 11 Nov 2002 20:14:51 +0000
>
>
>Oi pessoal,
>Se n�o me engano, esta rela��o � a rela��o presente na conjectura 
>Tanyiama-Shimura, provada por Wiles. Se n�o me engano, equa��es elipticas 
>s�o da forma y^2=x^3+ax^2+bx+c...qnt �s formas modulares, parece-me 
>impossivel imaginar ou desenhar tais formas pois elas sao 
>quadridimensionais.
>T�+
>[]�s
>F�
>
>
>
>
>
>>From: Wendel Scardua <articuno@linux.ime.usp.br>
>>Reply-To: obm-l@mat.puc-rio.br
>>To: obm-l@mat.puc-rio.br
>>Subject: Re: [obm-l] curvas elipticas e formas modulares
>>Date: Mon, 11 Nov 2002 15:16:39 -0200 (BRST)
>>
>>
>> > Acho que era isso, se nao for, estou aqui ainda :)
>>
>>�, acho q n�o era disso que ele tava falando...
>>Se n�o me engano (e � f�cil eu me enganar : )  ele falava
>>  das fun��es el�pticas usadas, por exemplo, na demonstra��o
>>  do Teorema de Fermat... (eu nem sei direito o q s�o... mas
>>  acho q eram algo do tipo Y^2 = polin�mio(X,Y) )
>>E fun��es modulares tb tinha a ver com esse teorema, mas
>>novamente, n�o conhe�o nada de nada sobre esse assunto...
>>
>>Algu�m a� tem uma informa��o mais, 'concreta' ?
>>
>>
>>  Wendel
>>--------------------------------------------
>>
>>=========================================================================
>>Instru��es para entrar na lista, sair da lista e usar a lista em
>>http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
>>O administrador desta lista � <nicolau@mat.puc-rio.br>
>>=========================================================================
>
>
>_________________________________________________________________
>MSN Hotmail, o maior webmail do Brasil. http://www.hotmail.com
>
>=========================================================================
>Instru��es para entrar na lista, sair da lista e usar a lista em
>http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
>O administrador desta lista � <nicolau@mat.puc-rio.br>
>=========================================================================


_________________________________________________________________
MSN Messenger: converse com os seus amigos online. 
http://messenger.msn.com.br

=========================================================================
Instru��es para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
O administrador desta lista � <nicolau@mat.puc-rio.br>
=========================================================================