[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

ENC: GA / Baricentro de um Tri�ngulo



De uma olhada no livro

A Matematica do Ensino Medio vol. 2
do Wagner, Morgado, Carvalho e Lima
publicado pela SBM

la tem tudo direitinho...

[]'s Guilherme Pimentel

-----Mensagem original-----
De: owner-obm-l@sucuri.mat.puc-rio.br
[mailto:owner-obm-l@sucuri.mat.puc-rio.br]Em nome de Arnaldo
Enviada em: quarta-feira, 14 de novembro de 2001 07:51
Para: Fernando Henrique Ferraz; obm-l@sucuri.mat.puc-rio.br
Assunto: Re: GA / Baricentro de um Tri�ngulo





>
>         Ol�...
>
>         Estava quebrando a cabe�a num problema do ITA
>(http://www.exatas.f2s.com/matematica/ga005.html) quando achei a solu��o
>usando a 'f�rmula' do baricentro: G((xa + xb + xc)/ 3, (ya + yb + yc)/3) do

>tri�ngulo.
>         Depois disso ficou bem f�cil o exerc�cio. mas fiquei me
>perguntando aqui, de onde que essa f�rmula vem. Procurei em v�rios livros

>mas ela � sempre 'empurrada' e nunca demonstrada ou provada.
>         Comecei a esbo�ar uma demonstra��o mas os c�lculos ficaram muito

>monstruosos. Parti dum tri�ngulo ABC, sendo A(x1,y1), B(x2,y2) e C(x3,y3).

>M sendo o ponto m�dio de AC, N ponto m�dio de AB e P o ponto m�dio de BC. A

>partir disso achei a equa��o geral de duas medianas (primeiro calculando o

>coefiente angular, a partir de /\y//\x, e dai jogando na formula da equacao

>geral da reta), ambas gigantescas... ie.:
>EQG de BM: y(x1 + x3 - 2x2) - y2(x1 + x3 - 2x2) = x(y1 + y2 - 2y3) - x2(y1

>+ y3 - 2y2)
>EQG de CN: y(x1 + x2 - 2x3) - y3(x1 + x2 - 2x3) = x(y1 + y2 - 2y3) - x3(y1

>+ y2 - 2y3)
>         A partir disso tentei trabalhar com esses dois 'monstros' ,
>isolando x numa e inserindo na outra, mas n�o fiz muitos progressos.. N�o

>h� alguma outra maneira de demonstrar que o Baricentro de um tri�ngulo
>sempre corresponde a m�dia simples de x e y?
>
>grato pela aten��o..
>
>
>Como vai Fernando? Aqui vai uma solu��o para o seu problema.

Seja G o baricentro do tri�ngulo ABC, e seja tamb�m Ma o ponto m�dio do lado
BC. Com isso temos que se G � baricentro ent�o
vetor(AMa)=(3/2)*vetor(AG):(1)
(qualquer livro de geometria demonstra isso), mas como Ma � ponto m�dio de
BC
ent�o XMa = (Xb + Xc)/2 e YMa = (Yb + Yc)/2, logo vetor(AMa) =
((Xb+Xc)/2-Xa;(Yb+Yc)/2-Yc)
e vetor(AG) = (Xg-Xa;Yg-Ya). Usando a igualdade (1) temos que (3/2)*(Xg-Xa)
= (Xb+Xc)/2 - Xa => Xg = (Xa+Xb+Xc)/3. Para acha Yg � igual.
>
>"Against stupidity, the Gods themselves contend in vain",
>     Friedrich von Schiller's
>-
>[]'s
>{O-Grande-Mentecapto}
>mentus@berlin.com
>
>
>
>
>
>
>
>
>
>


http://www.ieg.com.br